Paul Manning Nottingham University Hospitals

THE ROTATOR CUFF CURRENT CONCEPTS ARTHROSCOPIC REPAIR

Summary

- Simple Anatomy
- Types of Tear
- Arthroscopic Repair
 - Anchors
 - Patient Physiology
 - Repair Configuration
 - Rehabilitation
- Conclusion

Anatomical

Anatomical

Types of Tear Small/Medium < 3cm

<60 Wear and Tear <60>45 Post Dislocation

Best Candidates for Repair

Massive Tear >5cm

• >60

Treatment of Massive Tears

- Oeltoid Rehabilitiation
- Repair with Orthobiologic Material
 - Platelet Rich Plasma
- Muscle Transfers
- Arthroscopic Subacromial Decompression and Cuff Debridement/Biceps Tenotomy
 - 80% Good/Excellent results for pain (not function) (Gartsman)
- Reverse Arthroplasty

Partial Tears

PASTA Lesions

PASTA

Young
Painful
Debride
Beware Stiffness

Subscapularis

• Rare, liked by examiners

Arthroscopic Repair Small & Medium Tears

Current Concepts

Cuff integrity after arthroscopic versus open rotator cuff repair Julie Bishop 2006 JSES Volume 15, Issue 3, Pages 290-299 (May 2006)

Prospective study
MRI scans
1-year follow-up

Cuff integrity after arthroscopic versus open rotator cuff repair: A prospective study Julie Bishop 2006

• Cuff integrity is comparable for small tears

Cuff integrity after arthroscopic versus open rotator cuff repair: A prospective study Julie Bishop 2006

Large/Massive tears have twice the retear rate after ARCR

Arthroscopic Cuff Repair

Arthroscopy March 2000

Arthroscopy June 2002

Arthroscopy Feb 2003

Arthroscopy Nov 2003

LDER

- . ABSORBABLE
- . "NO-PROFILE" KNOTLESS REPAIR
- ARTHROSCOPIC & OPEN USE

The tissue compresses onto the tuberosity to maximize the repair "footprint." Strength is retained throughout the soft tissue healing period.

Arthroscopy June 2004

VERSALOK ... MY WAY

K. Miller, MD

canake Orthopaedic Center/Roanake mbulatory Surgery Center, Roanake, VA

Single Row with 2 ORTHOCORD Suturne into 2 VERSALOK

Jeffrey Rosen, MD NYU Hospital for Joint Diseas

Dual Row - 3 Spiral de Medially and 2 VERSALOK

Mini Open Ducid Kow - 2 SPIRALOK, 2 VERSALOK & a BIOKNOTLESS" RC

Arthroscopy 2007

Arthroscopy 2008

Adjustable tension Inner plug design allows fine-tuning of tension across the cull tissue

Joint Replacement Registry

Figure K13: Cumulative percentage of Revision of Unicompartmental Knee Prostheses

Sutures and suture anchors: update 2003

Barber 2003

Anchors should not represent the weakest portion of a repair.

Newtons

Sutures and Suture Anchors— Update 2006

Barber 2006

- Higher load to failure
- Screw-type versus nonscrew designs

Fixation of knotless suture anchors Brown 2008

 The three suture anchors tested

Opus Magnum Mitek Bioknotless RC Smith & Nephew TwinFix 5.0 Titanium.

Suture Anchor Materials, Eyelets, and Designs: Update 2008 F. Alan Barber

Suture anchors were tested in fresh porcine

Ortical

Cancellous Bone

Barber 2008

Table 1. Suture Anchor Properties

Anchor	Material	Suture	Load	Minor (mm)	Major (mm)	Length (mm)	Other Information
Kinsa	PEEK	No. 2 Ultrabraid	Single	2.9	3.4	15.14	3.0 tapered drill
Kinsa RC 5.5	PEEK	No. 2 Ultrabraid	Single	3.5	5.5	15.0	3.8-mm awl
BioRaptor 2.3PK	PEEK	No. 2 Ultrabraid	Single	2.3	3.0	11.56	2.6-mm drill
TwinFix PK FT 5.5	PEEK	No. 2 Ultrabraid	Double	3.5	5.5	14.99	3.8-mm awl; also available triple-loaded
TwinFix PK FT 6.5	PEEK	No. 2 Ultrabraid	Double	3.5	6.5	14.99	3.8-mm awl; also available triple-loaded
SwiveLock C	PLLA, PEEK	2-mm Fibertape	Single	3.7	5.5	15	5.5-mm punch; available with open (forked) and closed eyelets
PEEK SutureTak	PEEK	No. 2 FiberWire	Single	2.3	3	12	2.2-2.9 mm stepped drill
Corkscrew FT II	Titanium	No. 2 FiberWire	Triple	3.7	5.5	16	Also available in 4.5- and 6.5-mm and double-loaded
VersaLok	Titanium, PEEK	No. 2 Orthocord	4 strands	4.9 × 31	Expands to 6.3	4.9 × 27	—
BioKnotless	PLLA	No. 2 Orthocord	Single	2.9	3.9	9	"Internal" No. 2 Orthocord loop
BioKnotless BR	Biocryl Rapide	No. 2 Orthocord	Single	2.9	3.9	9	"Internal" No. 2 Orthocord loop
Healix Peek	PEEK	No. 2 Orthocord	Triple	3.9	5.5	18	Also available in 4.5- and 6.5-mm; also available double-loaded

Barber 2008

Cancellous Loads to Failure			
Anchor	No. of Tests	Mean Force (N) Range (N)	
Kinsa	7	173.7 101-265.5	
Kinsa RC 5.5	10	193.4 84-237	
BioRaptor 2.3 PK	10	76.0 29-116	
TwinFix PK FT 5.5	12	445.7 255-587	
TwinFix PK FT 6.5	12	505.4 344-603	
Healix Peek	10	390.1 348-482	
VersaLok	9	379.2 151.2-730	
BioKnotless	4	242.6 203.2-275.1	
BioKnotless BR	7	268.5 165.3-359	
Corkscrew FT II	12	330.3 187-409	
SwiveLock C	12	563.8 134-879	1
PEEK SutureTak	11	144.8 33-493 2	8

Worst case-Cancellous Bone

• screw

• 350 N

- The toggle anchors165 N
- expanding bolt designs150 N

Push-in anchors29 N

Barber 2008

A

Tissue Healing

Tendon Healing Three phases

- 1. Inflammatory phase
- 2. Proliferative phase
- 3. Maturation and remodelling phase

Inflammatory phase

• the first 7 days

- platelets from blood plasma enter the tear to initiate clot formation
- fragile bond
- Chemotactic mediators attract inflammatory white blood cells

Proliferative phase

- 2 to 3 weeks after tendon repair
- Fibroblasts, myofibroblasts, and endothelial cells, form granulation tissue.
- This tissue replaces the original fibrin clot with the scaffolding of a more permanent repair tissue
- Fibroblasts initially produce type III collagen, which is arranged haphazardly in the absence of cross-linking

The maturation and remodeling phase

- Begins week 3 after injury or repair
- synthetic activity slowly tapers and scar tissue organizes
- Immature type III collagen is replaced by mature type I collagen
- The collagen is continually remodeled until permanent repair tissue is formed

Histology of repair

Miyahara

- dog model
- restored by 24 weeks.
- Gerber
 - goat model
 - no histologically normal infraspinatus tendon-bone interface in a even at 6 months after surgery
- healing rates vary in different animal models

Cortical vs McCloughlin

St Pierre

- Goat
- formation of the collagen fibre-bone interface occurred by 12 weeks
- NO DIFFERENCE whether attached to cortical surface of the greater tuberosity or trough in the tuberosity.

Conclusion

"The surgeon should be aware of performance properties when selecting an anchor or suture"

Barber 2003

The Footprint

Anatomy and dimensions of rotator cuff insertions

1<u>5</u>mm

The Footprint Anatomy and dimensions of rotator cuff insertions Duges 2002

EM of supraspinatus footprintCurtis 2006

 "Notice how close to the rim of the articular cartilage the fibers are attached and that a few of them in this specimen have given way at the very edge"

The anatomy of the human shoulder

- CHAPTER I
- Codman 1933

Tendon-to-Bone Pressure Distributions

Transosseous Suture and Suture Anchor Fixation Techniques *Park* 2005 Tendon-to-Bone Pressure Distributions at a Repaired Rotator Cuff Footprint Using Transosseous Suture and Suture Anchor Fixation Techniques Maxwell C Park 2005

Transosseous
 TOS
 68mm²

Suture Anchor Mattress SAM 26mm²

Suture Anchor Simple SAS 34.1 mm²

Interface pressure

Mean Contact Pressure (MPa)

Contact Area

Arthroscopic Transosseous Equivalent

Many different techniques

Double Row fixation

Various Suture Patterns

Contact Area, Contact Pressure, and Pressure Patterns of the Tendon-Bone Interface *Tuoheti* 2005

o differences among the

- Transosseous
- single-row suture anchor
- double-row suture anchor techniques

Transosseous- TO Not TOS Tuoheti 2005

pressure-sensitive film between the tendon and bone

Single-Row Suture Anchor- SRSA

Figure 2. A, schematic diagram of the single-row suture fixation technique. B, the contact area of the single-row technique (mainly located around the anchor, with no contact area observed between the 2 anchors). C, a 3-dimensional image of the contact pressure and contact area represented by different colors.

Double-Row Suture Anchor - DRSA

Figure 3. A, schematic diagram of the double-row suture anchor fixation technique. B, the contact area of the double-row technique (mainly located around the anchor as well as in the central area between the 4 anchors). C, a 3-dimensional image of the contact pressure and contact area represented by different colors.

a.su-

в

A

С

Biomechanics of transosseous-equivalent repair compared to a double-row technique Park 2007

TOEfour suture-bridges.

TOEtwo suture-bridges Double-row rotator cuff repair technique

Need to Rehabilitate

Early Movement

Passive

Methods (Haber et al)

 An I-Scan 6900 electronic pressure sensor-TekScan

ABDUCTION RESULTS IN PERILOUSLY LOW LEVELS OF CONTACT WITH SINGLE -ROW REPAIRS

m1

SI	id	е	7	6

m1 mark, 21/08/2006

Conclusions

- Basic Principles of Anatomy, Tissue Healing & Biomechanics still apply to techniques for Rotator Cuff Repair
- Small/Medium Tears do very well with Arthroscopic Repair
 - Surgeons must understand
 - Properties of anchors
 - Biomechanics of cuff function
 - Appropriate rehabilitation protocols

Thankyou

