Shoulder Arthroplasty

Jaime Candal Couto

Osteoarthritis

"Improvement of self assessed health status after TSR (Total Shoulder Replacement) is comparable to that of

Total Hip replacement and Artery Bypass Graft"

- Boorman et al, JSES 2003

Patient

Prosthesis

Surgeon

1:The surgeon

Shoulder arthroplasty: incidence (100.000 population/year)

■ US: **21.55**

■ New Zealand: 4.2

■ UK: <u>3.6</u>

■ Norway: **2.8** (1994) - **4.7** (2005)

100-150 prosthesis / year

New Zealand Shoulder Arthroplasty register

- 3 m population
- 160 orthopaedic surgeons
- **4** years 2000-2003
- 686 primary prosthesis

THE OXFORD SHOULDER SCORE (OSS)

- 12 questions; score 1(best)-5(worst)
- 1. Worst pain from shoulder
- 2. Trouble with dressing
- 3. Trouble with transport
- 4. Using a knife and fork
- 5. Doing household shopping alone
- 6. Carrying a tray of food
- 7. Brushing/combing hair
- 8. Usual level of shoulder pain
- 9. Hanging clothes in wardrobe
- 10. Washing under both arms
- 11. Work interference due to pain
- 12. Pain in bed at night

Excellent: 12-18

Good: 19-26

Fair: 27-36

Poor: 37-60

SURGEON'S WORKLOAD & Oxford Shoulder Score (12-60)

J Candal-Couto, BOA 2005

ALL CASES	High volume surgeon	Low volume surgeon
Number of cases	221	224
Mean score	23.8	26.4 $p = 0.0038$

Outcome (%)

•Excellent	34.3 %	27.6 %
•Good	30.3 %	28.9%
•Fair	24.5 %	23.9%
•Poor	10.7 %	19.4%
		n<0.000

Surgeons who do >5 cases per year also have...

- Lower complication rates
- Lower Mortality
- Shorter Hospital Stay

■ <u>Jain at al, JBJS-A 2004</u>
■ <u>Hammond et al, JBJS-A 2003</u>

Shoulder arthroplasty: historical background. Pean, 1893

1951 Neer's Vitalim prosthesis

1970's Neer Total Shouder

Neer, et al, JBJS 1982

Humeral Stem Second Generation: 1980's

Anatomy of the humerus and prosthetic design

- Surprisingly not Studied in detail till 90's!
- Normal proximal Humeral anatomy Highly variable
- Variability between individuals and also right & Left

Basic Concepts: Normal anatomy

- Head-Shaft angle
- Retroversion
- Offset
- Radius of Curvature and height height

Basic concepts: Implant Considerations

- Humeral head size
- Humeral Head osteotomy
- Head-Stem relationship

1: Head - Shaft Angle

- Difficult measurement
 - Base of articular surface is a plane not a line
 - Humeral shaft is tubular
- Range 300-550

2: Retroversion

- Markedly variable
- **RANGE 00 550**

3: Offset

- Distance of Center of rotation to central axis of humeral canal
- CORONAL:4 to 14 mm MEDIAL
- SAGGITAL:

 -2 to 10mm POSTERIOR

4: Radius of Curvature and Head Height

- Radius of Curvature (RC):
 - 20-30mm
- Head Height: always ¾ of RC
- Surface Arc 150⁰

Implant Considerations

- Head Size
- Head-Stem Relationship
- Osteotomy

1:Head Size

- Too small or too large will change centre of rotation and alter dynamics of Rotator cuff
- Joint "Stuffed" vs "Slack"
- Surface Arc affected
- Mechanical Impingement
 - Tuberosity-Acromium
 - Humeral head-glenoid

2:Head Stem relationship: Offset

3:Humeral Head Osteotomy

- 2 different philosophies:
 - Cut the bone to match the prosthesis
 - Eg: Bigliani-Flatow (Zimmer)
 - Cut the bone anatomically and adjust the prosthesis to match the osteotomy
 - Eg: Anatomical Prosthesis (Zimmer)

■ Fixed neck-shaft angle

Adjust to retroversion

"3rd Generation" & Anatomical Humeral Prosthesis

- Aim to recreate normal anatomy
 - Restore/maintain dynamics of rotator cuff
 - Avoid impingement
- Modular heads
 - Height
 - Diameter
 - Offset
- Anatomical 3 dimensional variable angle

HUMERAL STEMMED COMPONENTS

- 3RD GENERATION/ ANATOMICAL DESIGNS
 - Logical
 - Superior results in laboratory
 - Technically much easier and reliable to reproduce normal anatomy
 - Very good short term-medium term clinical results
 - Godeneche et al, JSES 2002
 - Phahler et al, Act Chir Belg, 2009

Severe avascular necrosis

Patient

Prosthesis

Surgeon

The humeral Component: a different approach... RESURFACING ARTHROPLASTY

- Historically early loosening.
- Copeland prosthesis: satisfactory 10 year results
 - HA coating + design avoid loosening
 - Levy & Copeland, JSES ,2004

Copeland's resurfacing

- Widespread use in the UK
- Successful and reliable 10 year results
- Joint "overstuffing" causes problems

My experience

- 36 prosthesis
- 8 rheumatoid
- 2 cuff arthropathy
- 26 OA
- 34 satisfied
- 2 glenoid erosion-1revised
- 1 early infection
- 1 late infection-revised
- ? No loosening

The Glenoid

anatomy

The Glenoid

anatomy

The Glenoid

- Upper: 23mm – (18-30)
- Lower 29mm (21-35)

■ 37.9mm

■ 31.2-50.1mm

Glenoid inclination

■ Superior incline 4°

Glenoid version

Glenoid version

■ 2° anteversion-9° retroversion

Basic concepts

- Glenoid erosion/wear
- Radial missmatch
- Componnt design

1:Posterior glenoid erosion in OA

Posterior glenoid erosion in OA

Glenoid wear

- Eccentric reaming to correct >10° will make the glenoid surface significantly smaller and compromise arc of motion
- Grafting may compromise fixation of glenoid component

Conformity vs "Radial Mismatch"

- Physiological translation
- Cadaveric studies : 4mm mismatch best replicates normal glenohumeral kinematics
 - Karduna et al, JBJS A 1997
- Clinically, mismatch of 6-7mm provides best clinical outcome with low incidence of post operative radiolucent lines
 - Walch et al, JBJS A 2002

3 Glenoid component Designs and methods of fixation

- Endless number invented & abandoned!
- Modern glenoids: Areas of recent controversy
 - Cemented / uncemented /hybrid
 - All plastic / metal-back
 - Keeled / peg fixation
 - Flat back / curved back

WHICH GLENOID?

- Biomechanical and early clinical clearly favours:
 - 1. Pegged
 - 2. Curved Back
 - 3. Cemented, all plastic
 - 4. Radial mismatch 4-7mm

Strauss et al, JSES 2009

Alternatives to glenoid prosthetic replacement?

- Allograft
 - Meniscal
 - Achilles tendon
- "Ream & run"
- Microfracture

- MAY BE CONSIDERED IN THE YOUNG

3: The Patient

INDICATIONS AND TYPE OF ARTHROPLASTY

Pathology	ННА	TSA	"Reverse Shoulder"	
Osteoarthritis	138	213	3	
Rheumatoid arthritis	68	35	1	
Other inflammatory arthritis	3	2	1	
Acute proximal humeral fracture	94	3	0	
Old trauma	37	10	2	
Post recurrent dislocation	3	2	0	
Avascular Necrosis	21	5	0	
Cuff tear/ Cuff tear arthropathy (44) (*)	36	1	7	
Other	3	4	0	

(*) cuff tear does not exclude of other pathology. 8 cases had a second diagnosis: 3 OA, 1 RhA, 2 AVN and 2 "old trauma".

INDICATIONS & OSS

Excellent: 12-18

Good: 19-26

Fair: 27-36

Poor: 37-60

Pathology (n of cases)	Mean Score	t-test
Osteoarthritis (246)	22.4	P< 0.0001
Rheumatoid arthritis (75)	26.7	
Other Inflammatory (6)	29.1	
Acute Fracture Proximal humerus (42)	31.4 *	P< 0.0001
Old trauma (31)	29.8 *	P< 0.0001
Avascular necrosis (15)	25.5	
Cuff tear/ CT arthropathy (31)	29.6	
Post recurrent Dislocation (3)	27.3	
(*)Acute fractures vs old trauma $p=0.51$ (N.S)		

INDICATIONS AND TYPE OF ARTHROPLASTY & OSS

Diagnosis	Hemiarthroplasty		Total Shoulder Arthroplasty		
	Number of cases	Average Score	Number of cases	Average Score	
Osteoarthritis	88	25.4	158	20.7	P<0.0001
Rheumatoid Arthritis	47	28.3	28	24.4	P=0.09
Avascular Necrosis	11	27.2	4	21	P=0.075
Trauma (acute + old)	64	31.6	9	24.7	P=0.647
Cuff Tear/ CT arthropathy	25	31.2	1 5 (*)	21.0 23.4	P=0.03
(*) These 5 cases had a Rev	erse Shoulder	Arthroplasty			

Osteoarthritis

- TSR Vs HHA?
- Resurfacing option?

Osteoarthritis

- TSR results significantly superior to hemiarthroplasty alone ■ Edwards et al, JSES 2003
- But alternative view that HHA alone gives "acceptable" results
 - Norris et al, JSES 2002

Radnay et al, JSES 2007

- Largest Meta-analysis (23 studies)
 - 1952 patients (OA only)
 - 4 year follow up
 - -1966-2004
 - TSR significantly better that HHA:
 - Pain Relief
 - Forward elevation
 - Gain in forward elevation
 - Gain in external rotation
 - Patient satisfaction

But which option gives better long-term results?

Failure mechanisms:

HHA: Glenoid erosion

TSR: Glenoid loosening

Revision TSR for glenoid loosening

- 76% glenoid loosening at 15 years, Neer-2 TSR
 - Sperling at al, JSES 2004
- Revision at 4 years: 6.4%
 - Radnay et al, JSES 2007
- Large variations in reported literature: prosthetic design
 - Aequalis prosthesis >95% survival at 10 years

T Bunker, Bess 2008

Revision TSR for glenoid loosening

- Difficult surgery
- Bone graft
- 1-2 stage revision
- Both re-implantation of glenoid and conversion to hemiarthroplasty improve pain and function but reimplantation of glenoid better
 - Deutsh et al. JSES 2007

Revision HHA to TSR for glenoid erosion

- More likely if preoperative glenoid arthrosis, particularly if posterior glenoid wear
- In non-concentric wear, risk of poor results >40%
 - Levine et al JSES 1997
- Even if concentric wear, TSR provides superior results
 - Gartsman et al, JBJS-A, 2000

Revision HHA to TSR for glenoid erosion

- 10% revision at 4 years
 - Radnay et al, JSES 2007
- Glenoid erosion in 72% cases at 15 years
 - Sperling at al, JSES 2004
- Results of HHA revision to TSR not universally good and never as good as primary TSR

TSR vs HHA

Sperling at al, JSES 2004

- >15 year retrospective study (1976-1985)
- Patients age< 50
- Neer-2
- 78 HHA 36 TSR

	10 year survival	20 year survival
HHA	82%	75%
TSR	97%	84%

	HHA	TSR
Excellent	10%	21%
Satisfactory	30%	31%
Unsatisfactory	60%	48%

My practice

Young: resurface

Old: TSR if possible

Rheumatoid Arthritis

- ■TSR >HHR
- Glenoid deformity may not allow replacement
- DEFICIENCY OF ROTATOR CUFF DICTATES POOR FUNCTION

Rotator cuff arthropathy

Thank you

POST TRAUMATIC CONDITIONS

- Difficult!!
- Outcome unpredictable
- Osteotomy of GT probably best avoided
 - Boileau et al 2001
- "Double Bubble"

