Periprosthetic Femoral Fractures

SMG

Northern Region Sunderland Trauma Teaching Nov 2011

Aims

- Aetiology
- · Scale of the problem
- Risk factors
- · Approach to management - classification
- treatment
- Outcomes

Aetiology

- Intraoperative
- Postoperative

Intraoperative pp# Increasing incidence

– Primary THR	
Overall	1%
 Cemented 	0.3 -1.2%
 Uncemented 	3 - 5.4%
 Revision 	
 Cemented 	3 - 6.3%
 Uncemented 	7 - 20%
	Davidson, JBJS-Am 2008

Intraoperative pp#

- Implant or technique

Intraoperative pp#

Risk factors Patient

- Osteoporosis (age, female sex, steroids...)
- Metabolic bone disease
 Abnormal bone (Pagets, osteopetrosis...)
- · Deformity
- Previous surgery
- Osteolysis
- Surgeon
- Implant or technique

Intraoperative pp#

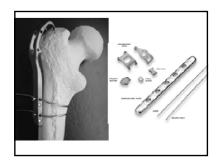
- Risk factors
 - Patient
 - Surgeon
 - Experience

 - Surgical approach
 Anterolateral > posterior
 MIS techniques

 - Adequate exposure & ST release, careful dislocation & implant removal reduce risk
 - Implant or technique

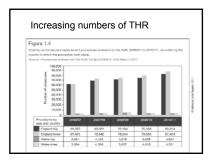
Intraoperative pp#

- Risk factors
- Patient
- Surgeon
- Implant or technique
 Uncemented stems
- Longer stems (femoral bow)
 Impaction grafting (4-32%)
- Prophylactic cables, strut grafts can reduce risk


Intraoperative pp#

- Be aware of risk
- Pre-op planningProphylactic measures
- High index of suspicion, 'change of resistance' Explore / on-table •
- .

- maging
 Revision or fixation
- Implant must be stable at finish

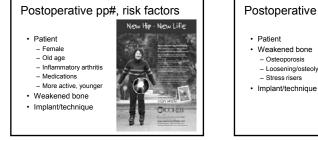


Postoperative pp#

Scale of problem

- Reported rates ~1% (0.1-2%) after primary THR
- Lindahl, J Arthroplasty 2005
 Increasing incidence
 Annual incidence
 O.07% for first 18yr after THR
 Accumulated incidence
 O.4% after primary THR
 2.1% after revision THR
 80% type B fractures

Incre	asing	unce	ment	ed Tł	HR	
Figure 2.8						
Types of primary hip neglec 8071 94 20 50 % 20 % 20 % 20 % 20 % 20 % 20 % 20 % 2		nes undertak	···· • ···	2	↑ intr ?pos	
Tear	2005	2006	2007	2008	2009	2010
- • Cemented	54%	40%	43%	38%	- 30%	36%
 Comortions 	22%	25%	2096	33%	39%	4396
• • • Hybrid	1235	14%	1499	15%	10.99	1696


Year of operation	Primary hip	Revision hip				
Number of all NJR records						
2003 (April-Dec)	26,432	2,82				
2004	48,032	5,23				
2005	57,490	6,34				
2006	59,715	6,68				
2007	66,616	7,43				
2008	69,839	7,53				
2009	69,936	7,84				
2010	68,907	7,85				
All years	466,967	51,76				

Solari Nambor with patient data Annaya api 193 193 193	No. 6,717 6,326 70.5		- No. 430		Nic	- 5	No.		No	
Number with patient data Annrage age 103	6,326			676						
Anesge sige 193	70.6	PIN			3/10	-		\$776	1,000	
123				PHIS	540	16%		9276		610
			69.08		67.7		70.04		69.83	
			10.0		12.3		14.6		12.83	
	\$2.792		62.7-75.9		61.0-76.5		63.5-80.0		63.1-/8.0	
Gender										
Ferrale 731	rev	isi	ons f	or	pp#	in :	2010	16	4,291	
					tions					
PI - III and Isuality INOL	COL	1111	ing n	хa	lions			90	768	109
P2 - mid doesoe not incepisching	4,541	03%	296	64%	055	6%	29	40%	4,921	60%
P3 - incapacitating systemic disease	1,082	22/76	100	37%	1/0	30%	25	42%	2,001	25/7
PE - Ife Trotaloning docupe	90	1%	6	- 1%	3	-1%	4	7%	112	19
PS expectant to dis within 24 hours with or without an operation	0	0%	1	<1%	0	0%	0	0%	1	<19
indications for surgery										
Asig0t lossering	3,387	00%	70	14%	62	11%	12	27%	3,531	403
	1,010	10%	10	10%	35	6%	-4	7%	1,100	143
Lysio										
Lyse Pan	1,828	27%	17	21%	76	125	11	18%	2,017	263

- Weakened bone
- Implant/technique

Postoperative pp#, risk factors

· Weakened bone - Osteoporosis Loosening/osteolysis

Postoperative pp#, risk factors

- Patient · Weakened bone
 - Osteoporosis Loosening/osteolysis
- Stress risers Implant/technique

Postoperative pp#, risk factors

- Patient
- · Weakened bone Osteoporosis

- Stress risers

Bethea- 75% of 31 pp# associated with loose implant CORR 1982
 Beals- 27% of 93 pp# loose CORR 1996

Implant loosening

- Loosening/osteolysis
- · Implant/technique

Postoperative pp#, risk factors

Patient

- · Weakened bone
 - Osteoporosis - Loosening/osteolysis

Cortical perforation

- Stress risers
 Cortical perforation
 Screw holes
 Press-fit stem tip
- Implant/technique

Larson- strength only 44% of intact femur J Orthop Res 1991

- Talab- 4 # of 14 perforations in 500 THR CORR 1979

?bone grafting and protected WBing

 Weakened bone Osteoporosis - Loosening/osteolysis

Patient

- Stress risers
 Cortical perforation
 Screw holes
 Press-fit stem tip
- · Implant/technique

Postoperative pp#, risk factors

- Patient
- Weakened bone
- Implant/technique
- ?higher risk cemented - Large press-fit stems
- Impaction grafting

Postoperative pp#, risk factors

Mayo clinic 1997

- 0.6% of 17,579 cemented primary
 0.4% of 2,078 uncemented primary
 2.8% of 3,265 cemented revisions Weakened bone
- Implant/technique - ?higher risk cemented
- Large press-fit stems

Patient

- Impaction grafting
- 1,5% of 1,132 uncemented revisions Prelects age & bone quality in those chosen for cemented

Assessment & management

Assessment

What do you need to know?

Assessment

 What do you need to know? • History

Assessment

- What do you need to know?
- What happened?
 Details of previous surgery, date, implants etc

• History

- ?pain & mobility prior to #
 Anything to suggest infection
- Co-morbidities

Assessment

 History · What do you need to know? • Exam

Assessment

- · What do you need to know?
 - Exam
 - Soft tissues
 Scars

History

- ?infection
 Neurovascular status
- General health

Assessment

- What do you need to know?
- History • Exam
 - Investigations

Assessment

- History • Exam
- What do you need to know?
 - Investigations - Bloods, inc ESR,CRP

 - Bloods, Inc ESR, CKP
 ?aspiration / biopsy
 General work-up
 Xrays
 ?CT
 esp for acetabulum
 ?osteolysis / poly wear
 Component position

Assessment

What do you need to know?

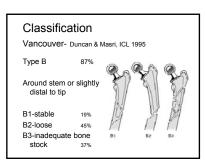
X rays:

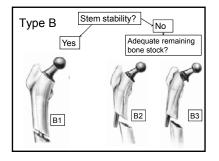
Assessment

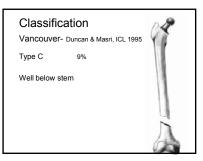
What do you need to know?

X rays:

- Fracture location
- Fracture pattern
 - Stem stability- is it fixed or loose?
- Quality of remaining bone stock


Classification


Vancouver- Duncan & Masri, ICL 1995


- Validated, reliable
 Brady,J Arthroplasty 2000
 Rayan, JBJS-Br, 2008
- Allows: assessment of fracture
- management planning

Classification Vancouver- Duncan & Masri, ICL 1995 Type A 4% Trochanteric region

Treatment

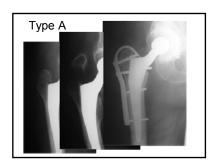
Goals

.

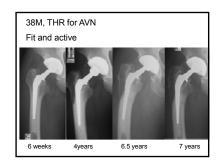
Fracture union

Maintain or obtain functional prosthesis · Prevention · Protected WBing · Non operative management

Options

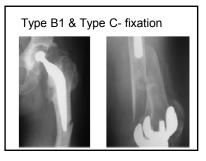

Restoration of WBing function • Fixation

Classify & plan treatment


Type A

- If fracture stable- ?non-op unstable- fix
- If implant looserevise

Type A- beware lytic #



B1 fixation

B2, B3 revision

? easier revision in B2 after ORIF
 Kamineni 15 B2 # fixed, all united at mean 3.5 months, 3 revised BHS 2000

Type B 2 or 3- revision

- Assess bone stock

 After implant / cement removal

 Acetabulum
- Implants
- Augmentation

Type B 2 or 3- revision

- Assess bone stockAcetabulum:
- Loose, worn, malpositioned?
- Implants
- Augmentation

Type B 2 or 3- revision

- Assess bone stock
- Acetabulum:
 Loose, worn,
 malpositioned?
- Implants
- Augmentation

Type B 2 or 3- revision

- Assess bone stock
 Must have axial &
- rotational stability
 Acetabulum
 By-pass distal
- Implants
- By-pass distal extent of # by at least 2 cortical diameters
- Augmentation
 Augmentation
 Fixation as proximal
 as possible but as
 distal as necessary

Type B 2 or 3- revision

- Assess bone stock
 Is the isthmus intact?
- Acetabulum
- ImplantsAugmentation
 - Is the r
 - Is the whole femur deficient?

 Is there a need for distal screw fixation?

Type B 2 or 3-	revision
Assess bone stock	 Is the isthmus intact?
 Acetabulum 	
Implants	 Is there a need for distal screw fixation?
 Augmentation 	
	 Is the whole femur deficient?

Type B 2 or 3- revision

- Assess bone stock
- Acetabulum Train
- Implants
- Augmentation
 Augmentation
 - Si
- Fracture pattern

 Long spiral
 Lower bending moment
 Heal stater

 Transverse / short oblique

 Higher bending moment
 Heal stover

 Additional support

 Stout grafts

 Restoration of bone stock

 Impaction bone grafting



Type B 2 or 3- revision

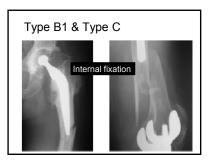
- These are complex cases
- Plan carefully
- · Be prepared!

Treatment options

Non operative

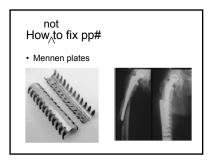
 Undisplaced, stable #, good bone

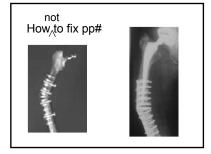
Johansson JBJS-A 1981 Cooke JBJS-B 1988


Treatment options

- Non operative
- Very elderly, unfit
- If # reduction can be achieved & maintained

Treatment options


- Adolphson- 21 treated in traction, all united. 6 reoperation for malunion Arch Oth Tr Surg 1987
- Beals 93 # in 86 patients
 28% treated non-op
 45% malunion or marked shortening
 11% non-union
- Mont & Maar- review 487 patients satisfactory outcome with traction in 57% along stem, 43% at tip, 77% distal to tip J Arthroplasty 1994


CORR 1996

not How to fix pp#

not How to fix pp#

 Noorda- 36 pp# treated with Mennen plate 10 non-union with 20-30° varus 8 plates broke JBJS-A 2002

Type C

- # distal to stem tip
- Standard principles of fracture fixation
- · May need to overlap distal part of stem to avoid stress riser

Type B1

- More difficult · Assessment of stem
- stability · Accurate reduction
- Control of proximal
- fragment
- Implants
- Augmentation

Type B1

- More difficult · Assessment of stem stability
- Accurate reduction
- Control of proximal
- fragment Implants
- · High rate of fixation failure in some reports, up to 30-50%
- - Probably B2 mis-classified as B1
- Augmentation

Type B1

- More difficult
- · Assessment of stem stability
- Accurate reduction
- Control of proximal fragment
- Implants
- Augmentation

Careful preop X ray analysis – Intact interface Lucent lines, I-C; B-C; I-C Cement mantle # alone is OK

- Fluoroscopy
- Intraoperative assessment

Type B1

- More difficult
- · Assessment of stem
 - stability

Control of proximal fragment

- Implants

analysis Fluoroscopy – Screen, look for movement

· Careful preop X ray

- Type B1
- Assessment of stem
- If stem tip accessible through #
 Arthrotomy, dislocate & test

· Careful preop X ray

analysis

•

.

Fluoroscopy

Intraoperative assessment

· Accurate reduction

- Intraoperative

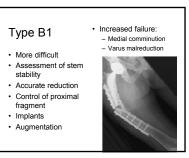
Augmentation

assessment

More difficult

- - stability

Accurate reduction


- Control of proximal fragment
- Implants
- Augmentation

Type B1

- 45 stems classified pre-op as B1 More difficult
- Assessment of stem stability
- Accurate reduction Control of proximal
- fragment Implants

- Augmentation
- intra-op Corten, JBJS-Br 2009
- 20% (9) of stems found to be unstable, reclassified as B2

- More difficult
- Assessment of stem stability
- Accurate reduction
- Proximal fracture Control of proximal fragment
- Implants
- Augmentation
- extension

• Stem / cement

filling canal

- · Large bending moment

Type B1

- More difficult · Assessment of stem stability
- Accurate reduction
- Control of proximal fragment
- Implants
- Augmentation

Type B1 More difficult

- · Assessment of stem
- stability Accurate reduction
- Control of proximal
- fragment
- Implants
- Augmentation

Type B1

- More difficult · Assessment of stem
- stability
- Accurate reduction
- Control of proximal fragment
- Implants
- Augmentation

Fixation of pp fractures Testing of plate constructs

- · Plates with cables alone
- · Plate + prox cables, distal bicortical screws
- · Plate + prox unicortical screws, distal bicortical
- · Plate + prox uni + cables, distal bicortical
- · Cortical allografts + cables

Tested in axial compression, bending,torsion

Fixation of pp fractures Testing of plate constructs

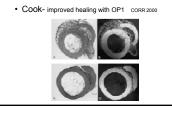
- · Plates with unicortical screws & cables proximal + bicortical screws distal best
- · Multifilament cables better than monofilament Schmotzer, J Arthroplasty 1996

Locking Compression Plates

- Well suited to
- osteoporotic bone
- Angle stable construct
- Blood supply preserved
- Enables MIPO Coaxial combination
- holes

Cortical strut allografts

- · Use cables not wire to attach
- · 3 cables in each segment
- 2 struts, lateral and anterior
- Avoid medial stripping
- Use struts 1/3 diameter of host bone Freeze dried less stable in torsion than fresh frozen

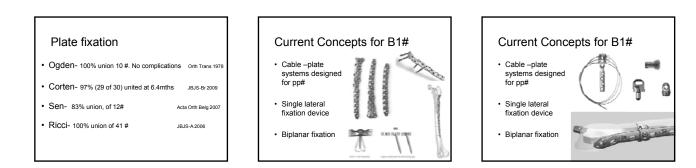

Haddad, JBJS Am 2002

Cortical strut allografts

- Chandler- anatomic union 16 of 19# at 4 mths 2 non-union, 1 delayed Sem Arthroplasty 1993
- Hadad- 19 strut grafts alone, 21 graft + plate
 39 united, returned to preinjury level
 JBJS-A 2002

On-lay cortical allograft struts

On-lay cortical allograft struts Expensive- \$2500 femoral allograft, limited availability

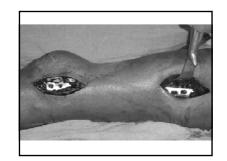

· Difficult to shape ?disease

transmission

6mths

· Weaken over 4-

Biomechanical testing On-lay cortical allograft struts Dennis- Ogden plate biomechanically stronger than 2 strut grafts, 1,295N v 950N JOT 2001


Current Concepts for B1#

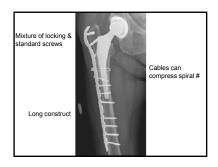
- Cable –plate systems designed for pp#
- Single lateral fixation device
- Biplanar fixation
- Indicated when:
 No medial comminution
 Accurate reduction Fix long

 At least 4 bicortical equivalent either side of #

 · Combined screws & cables

· Less invasive (possible)

Current Conce	pts for B1#
Cable –plate	Less invasive (possible)
systems designed for pp#	Indicated when: - No medial comminution - Accurate reduction
 Single lateral fixation device 	Fix long At least 4 bicortical equivalent either side of #
Biplanar fixation	Combined screws & cables



Current Concepts for B1#

- · Less invasive (possible) Cable –plate systems designed for pp# Indicated when:
 - No medial comminution
 - Accurate reduction
- Single lateral fixation device

 - Fix long

 At least 4 bicortical equivalent either side of #
- Biplanar fixation · Combined screws & cables

Current Concepts for B1# • Wider exposure Cable –plate systems designed for pp# required Indicated for : more unstable # patterns Poor bone quality Single lateral fixation device Biplanar fixation 2 plates or plate + cortical strut graft

Review Milde			Type B1 femoral fra	dum
Principles of Treatmen	t for		diagnosed preopers	
Periprosthetic Fernoral	Shaft		per piain radiogra	phy
Fractures Around Well			1	
Hip Arthroplasty		E .	Occult integtion cons	idential
inp receiver up and			and investigated acco	
3454 Pix, 342			in margine and	
Darie Dericken, MD, MPUL		-		
Read Status, MR, MRG, MRG, MRG,			Confirm implant eta	
City P. Dones, MD, Mic-			intracperatively if in-	Jouce
TROC Intel Obio, MD, IBCIC				
Barrath A. 1844, 167, 187, 187, 1		Stably		Unatable
		(400-4)		
14 4 0 0 0000	Low 1		1	Professified to 82/83.
JAAOS, 2009	108	ntrmed 81: OFIR	·	mutation THA
	Adequate	Inacioquate	Insistent	Extensive poin-
	have stock	bone alock	alarized TKA	ethylene wear plus
			Andrew Market	categorate e acastatzular
				component rolposition
		_		
	Minimally	Locked plate	Locked plate	CHIP of the femur plus
	10x25812	augmented	ANT printega	aperadular revision
	locked piate	with conticol	and THA	(one-or two-stage
	with splinn	stor alograft	femoral stems	procedure)
	to place			
	noniocked			
	307943			

Summary

- Uncommon but serious problem after joint replacement
 Incidence increasing
 Treatment depends on
 location & pattern of #
 stability of implant
 adequacy of bone stock

- Fixation or revisionPhone a friend!

Summary

BE PREPARED!

Any questions?