Causes of Dislocation in THR

Debbie Lees

ST3

Background

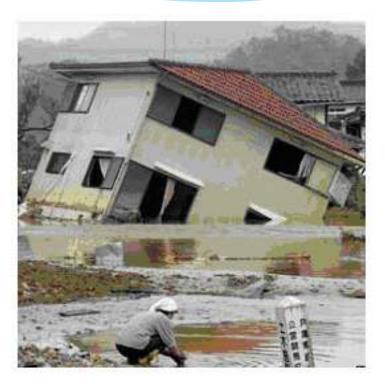
- Dislocation remains a major complication of total hip replacement (THR) with revision procedures required in 13% to 42% of patients who recurrently dislocate.
- * Dislocation rates following THR vary between 0.5% and 5%, depending in part on the initial indication for replacement.
- * More than three-quarters of all such dislocations occur within the first postoperative year; 30% to 50% take place within the first three months.
- * 74% posterior, 16% anterior, and 8% lateral

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset


- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- * Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

- Patient risk factors
- Positional dislocations
- Soft tissue laxity
- * Component malposition
- * Component impingement
- * Femoral head size
- * Component subsidence
- * Lateral / medial offset

Patient risk factors

- Excessive alcohol intake (dislocation rate of up to 20 %)
- * In patients w/ DDH, risk of dislocation may be as high as 8%

***** Positional dislocations

- * Components are positioned correctly & soft tissues are balanced
- Patient puts the hip into a position that is beyond the range possible w/ prosthetic components

* Soft tissue laxity

- * Shortening in either vertical or horizontal direction causes soft tissue imbalance
- * Late dislocation may be related to gradual stretching of pseudocapsule
- * Laxity of soft tissue is most frequent cause of instability of THR when radiographs reveal good position of components
- * Trochanteric non union is another risk factor for dislocation because of soft tissue tension

Component malposition: (acetabular component)

Safe position: 35 +/- 10 deg anteversion 40 +/- 10 deg abduction

* Acetabular abduction angle

- Horizontal cup placement (less than 40 deg) may lead to early impingement in flexion
- * Impingement between neck and poly liner
- Result can cause osteolysis, liner dislodgement, and component loosening

* Version of acetabulum

 Unnoticed forward rotation of pelvis when surgical procedure is done in lateral position is one cause of mal-alignment of component that can result in an unnoticed retroversion position of cup

Version of femoral component;

The femoral component should be neutral to 15 degrees of anteversion, small heads require less anteversion, no retroversion of the femoral component is allowed

* Component impingement:

- Posterior dislocation may be caused by anterior osteophytes which protrude beyond the edge of the acetabular cup
- * Anterior dislocation may be partially due to the presence of a high wall liner placed posteriorly

* Over-medialization of the cup:

- * More common in protrusio
- Over-medialization causes impingement of the femoral neck on the pelvis
- * Management of this situation may involve use of a lateralized liner (high wall liner will not help this);
- * Horizontal cup placement (less than 40 deg) may lead to early impingement in flexion
- * In this case there is impingement between neck and poly liner;
- Result can cause osteolysis, liner dislodgement, and component loosening;

Femoral head size:

- Smaller diameter head (22-28 mm) allow less stress/torque but may result in increased central acetabular wear and dislocation;
- Larger head sizes (32-36 mm) allow increased ROM and reduced dislocation, but have less net wall thickness for long term wear

***Component subsidence:**

* Limb length shortening is a known cause of dislocation

*Lateral / medial offset:

* Lateralized femoral stem may be used to restore stability, but this may increase component micromotion;

References

*1. Sanchez-Sotelo J, Berry DJ. Epidemiology of instability after total hip replacement. Orthop Clin North Am 2001;32:543-52.

*2. Li E, Meding JB, Ritter MA, Keating EM, Faris PM. The natural history of a posteriorly dislocated total hip replacement. J Arthroplasty 1999;14:964-8.

*3. Woo RY, Morrey BF. Dislocations after total hip arthroplasty. J Bone Joint Surg [Am] 1982;64-A:1295-306.

*4. Fender D, Harper WM, Gregg PJ. Outcome of Charnley total hip replacement across a single health region in England: the results at five years from a regional hip register. J Bone Joint Surg [Br] 1999;81-B:577-81.

*5. Mahoney CR, Pellicci PM. Complications in primary total hip arthroplasty: avoidance and management of dislocations. Instr Course Lect 2003;52:247-55.

*6. Kwon MS, Kuskowski M, Mulhall KJ, et al. Does surgical approach affect total hip arthroplasty dislocation rates? Clin Orthop 2006;447:34-8. *7. Berry DJ, von Knoch M, Schleck CD, Harmsen WS. The cumulative long-term risk of dislocation after primary Charnley total hip arthroplasty. J Bone Joint Surg [Am] 2004;86-A:9-14.

*8. Meek RM, Allan DB, McPhillips G, Kerr L, Howie CR. Epidemiology of dislocation after total hip arthroplasty. Clin Orthop 2006;447:9-18.

*9. Amstutz HC, Lodwig RM, Schurman DJ, Hodgson AG. Range of motion studies for total hip replacements: a comparative study with a new experimental apparatus. Clin Orthop 1975;111:124-30.

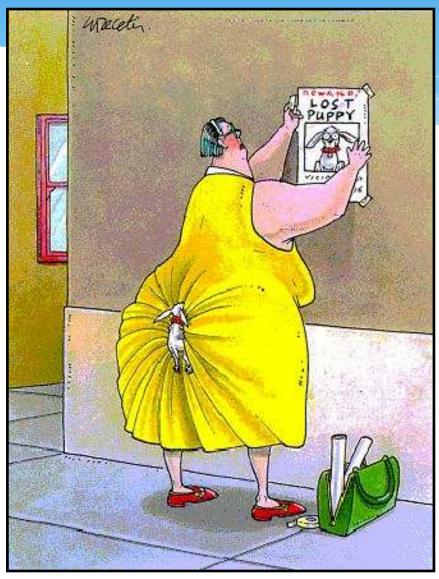
*10. Eftekhar NS. Dislocation and instability complicating low friction arthroplasty of the hip joint. Clin Orthop 1976;121:120-5.

*11. Kelley SS, Lachiewicz PF, Hickman JM, Paterno SM. Relationship of femoral head and acetabular size to the prevalence of dislocation. Clin Orthop 1998;355:163-70.

*12. Sultan PG, Tan V, Lai M, Garino JP. Independent contribution of elevated-rim acetabular liner and femoral head size to the stability of total hip implants. J Arthroplasty 2002;17:289-92.

*13. Berend KR, Sporer SM, Sierra RJ, Glassman AH, Morris MJ. Achieving stability and lower limb length in total hip arthroplasty. J Bone Joint Surg [Am] 2009;92-A:2737-52.

*14. No authors listed. National Joint Registry for England and Wales: 7th annual report, 2010. http://www.njrcentre.org.uk (date last accessed 22 March 2011).


*Doehring TC, Rubash HE, Dore DE. Micromotion measurements with hip center and modular neck length alterations. Clin Orthop Relat Res. 1999 May;(362):230-9

*Robinson RP, Simonian PT, Gradisar IM, Ching RP. Joint motion and surface contact area related to component position in total hip arthroplasty. J Bone Joint Surg Br. 1997 Jan;79(1):140-6.

*Komeno M, Hasegawa M, Sudo A, Uchida A. Computed tomographic evaluation of component position on dislocation after total hip arthroplasty. Orthopedics. 2006 Dec;29(12):1104-8.

*D'Lima, D., Urquhart, AG., Buehler, K., Walker, RH., Colwell, CC., The Effect of the Orientation of the Acetabular and Femoral Components on the Range of Motion of the Hip at Different Head-Neck Ratios. The Journal of Bone & Joint Surgery. 2000; 82:315-21

Thank You

