Acquired Adult Flatfoot Deformity

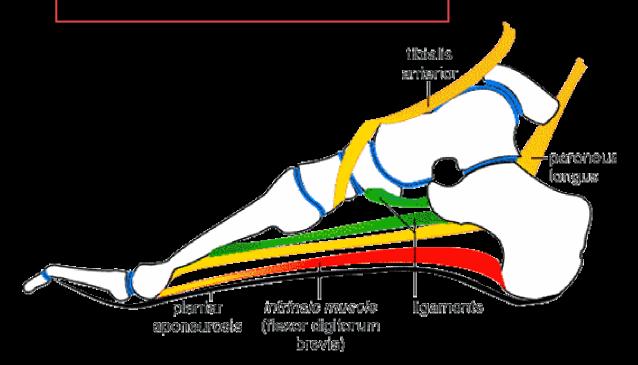
Mr Andrew Gower
Orthopaedic Consultant
University Hospital of North Durham

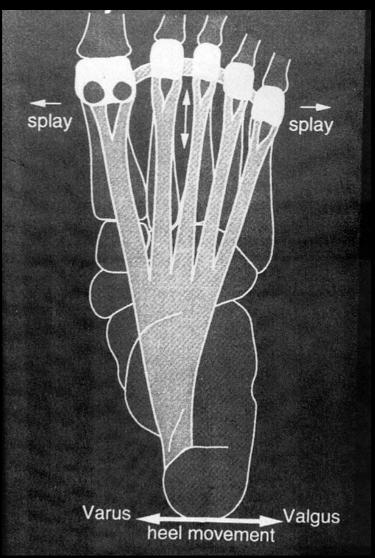
Outline

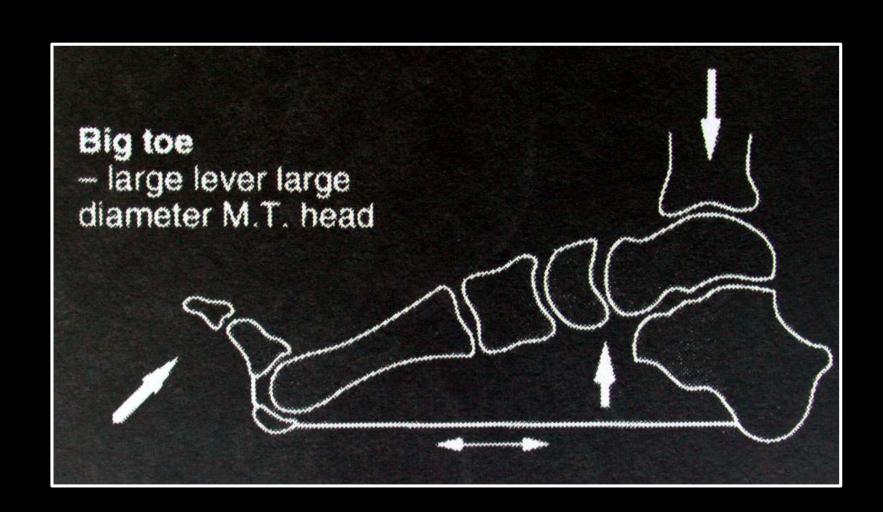
- Anatomy
- Pathology
- Biomechanics
- Clinical presentation
- Treatment options

Anatomy

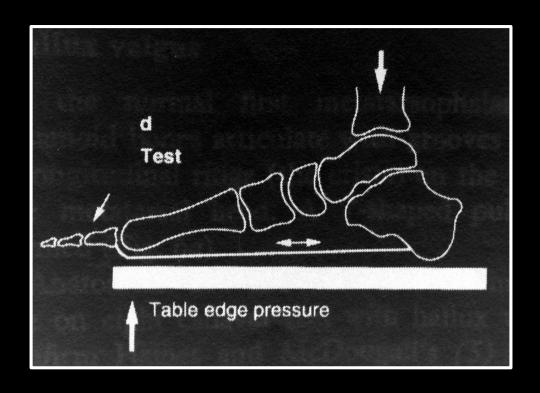
Posterior Tibial Tendon


- police.
- Hindfoot supinator
- Hypovascular zone




Stabilisers

- Plantar fascia
- Spring ligament
- Deltoid ligament



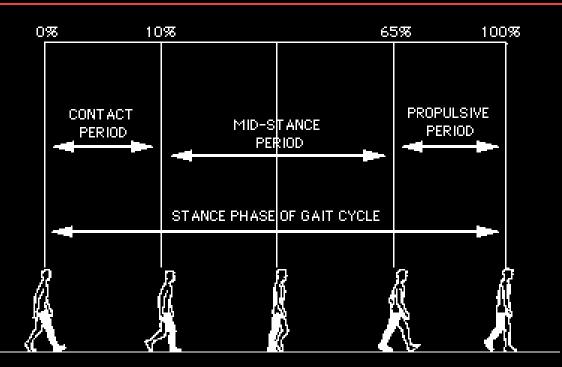
Windlass mechanism

Reversed windlass mechanism

- Probably the strongest flexor of the MTPJ's
- Assists propulsion at toe-off

Pathogenesis

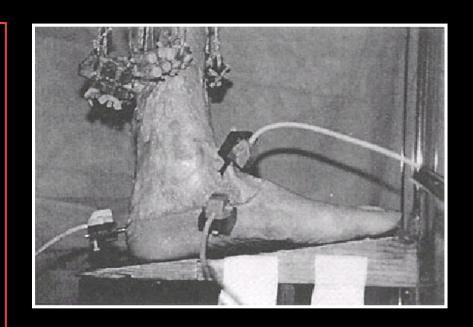
Theory 1 - Overpronation


- Causes forefoot supination
- Compensatory hindfoot pronation
- Leads to increased stress on medial soft tissues, including PTT

THE ARCH FLATTENS OUT AS THE FOOT STRIKES THE GROUND

Theory 2 – Achilles tightness

- Short gastrocnemius-soleus complex
 - Maximal dorsiflexion of the foot is required at "Heel rise"
 - Talonavicular joints don't reach neutral
 - Leads to increased stress on posteromedial soft tissues


Biomechanics

Sangeorzan et al. Foot and Ankle International 2001; 22(4): 292-300

Compared the kinematic orientation of the fourbone hindfoot complex in normal feet with:

- 1) PTT loaded (normal), and
- 2) Unloaded (simulating dysfunction).
- Repeated with attenuation spring ligament

Sangeorzan et al. Foot and Ankle International 2001; 22(4): 292-300

- Intact osteoligamentous structures are initially able to maintain normal alignment
- Once the soft tissues have been weakened... restoring PTT function had little effect
- •Early treatment may prevent flatfoot deformity development

Sangeorzan et al. Foot and Ankle International 2001; 22(4): 292-300

- Nonsurgical treatment of the PTT deficient foot (such as bracing) should either:
 - Provide support during heel rise or
 - Maintain the foot in a position wherein the PTT is minimally loaded.

Pathology

PTT dysfunction

- PTT overloading
- Chronic microtrauma
- Inflammatory response
- Weakening of PTT
- Failure of static stabilisers
- Arch collapse

Differential Diagnosis

- Inflammatory arthropathy
- Degenerative arthritis of the hindfoot
- Malaligned Lisfranc arthritis
- Tarsal coalition
- Traumatic injury to the plantar fascia or ligaments

Clinical Presentation

- Posteromedial heel pain
- Maybe a history of trauma
- Usually gradual onset
- Weakness or easy fatigue with walking
- Progressive flattening of arch
- Unable to run or stand on tip toe
- Later, lateral heel pain and stiffness

Patient factors

- Most common age 30 to 50
- Often female
- More commonly obese
- Inflammatory arthropathy
- Often been flat-footed in the past
- Also enquire about:
 - Smoking
 - Diabetes
 - Steroid use

Examination

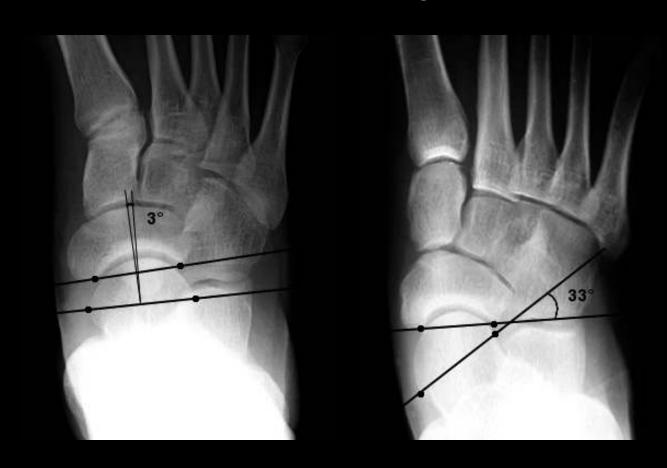
- Look.Feel.Move
- Range of motion
- Flexibilty
- Gastrocnemius tightness
- Hindfoot to forefoot alignment
- PTT strength
- Neurovascular examination

Gait

- Antalgic
- Short stride
- Flat foot
- Poor or absent heel rise

Single-leg heel rise

- - Fatigues
 - Persistent hindfoot pronation
 - Unable to do
 - Too painful


Radiology – wt. bearing

Lateral talometatarsal angle (Meary's)

Radiology -AP talonavicular coverage angle

The angle between the articular surfaces of the talus and the navicular is less than 7 degrees.

Investigations

- and the second
 - MRI
 - CT scan
 - Ultrasound

Classification

Johnson and Strom

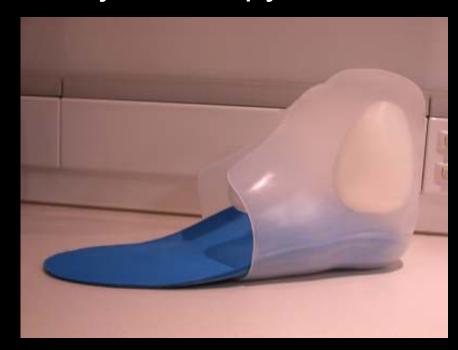
- Simple classification
- Complexity added later
- Untreated patients progress from Stage 1 to 4
- Stage is a good guide to management

Classification (Johnson and Strom)

Stage	Description		
	Tenosynovitis without deformity		
II	Ruptured PTT and flexible flatfoot		
IIA	Midfoot flexibility		
IIB	Midfoot supination correctable		
IIC	Midfoot supination fixed		
III	Rigid hindfoot valgus		
IV	Ankle valgus		

Management

Depending on Stage and patient factors


Stage I

- Inflamed or partially ruptured,
- Minimal or no deformity
- Continuity of the tendon is maintained.
- Pain dominant feature

Stage I - No deformity

- Removable cast/boot
- Walking cast
- Orthosis
- Physiotherapy

Stage I - Surgery


- Limited role
- For failed conservative management
 - Options:
 - Tenosynovectomy??
 - Tendon transfer and augmentation

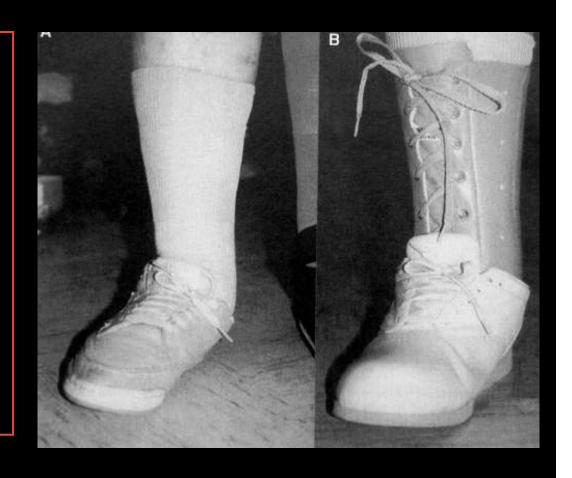
Stage II

- PTT tendon rupture
- Clinically apparent flatfoot,
- Inability to single leg heel rise.
 - A. Hindfoot valgus. minimal if any residual forefoot supination.
 - B. Flexible forefoot supination.
 - c. Fixed forefoot supination.

Stage II - Conservative

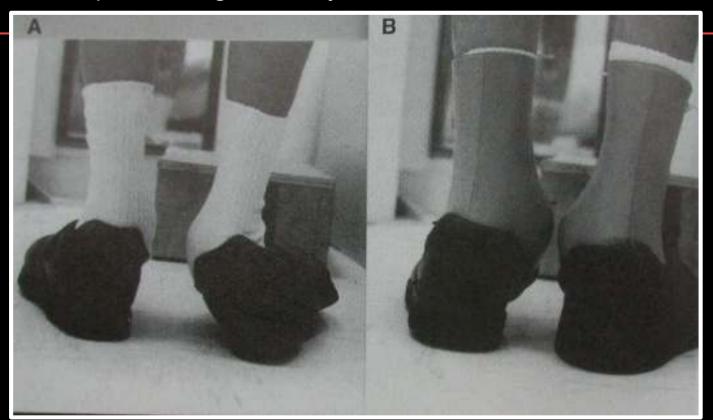
- polar.
- Arizona AFO
- UCBL
- Off the shelf AFO + medial heel wedge and arch support
- Physiotherapy

Arizona AFO — Augustin et al. Foot ankle Clinics of North America Vol 8 (2003)


21 patients:

stage I (6) stage II (12)

stage III (5)


Mean age 57 years (34 to 84)

Mean follow up 12 months (3 to 19)

Arizona AFO — Augustin et al. Foot ankle Clinics of North America Vol 8 (2003)

- The same of the sa
 - AOFAS hindfoot score increased from 38 to 76 (p<0.001)
 - Foot Function Index significantly improved in all categories
 - SF-36 Improved significantly in 8 out 9 areas

Stage II - Surgery

- Indicated for failed conservative management
- Unless:
 - Unfit for surgery,
 - Elderly, low demand
 - Don't want surgery
- Tendon transfer plus Medial slide calcaneal osteotomy
- Consider:
 - Calcaneal lengthening
 - TA lengthening

Stage III

- Associated with a more advanced course of tendon rupture and deformity
- Characterized by rigid hindfoot valgus.
- Rigid forefoot abduction or instability at the first TMT joint.

Stage III - Conservative

- The same of the sa
 - Unfit for surgery
 - Low demand
 - ■Not too much pain
 - Unrealistic expectations of surgery
 - Options:
 - Arizona AFO
 - Caliper
 - Extended UCBL

Stage III - Operative

May consider tendon transfer and slide

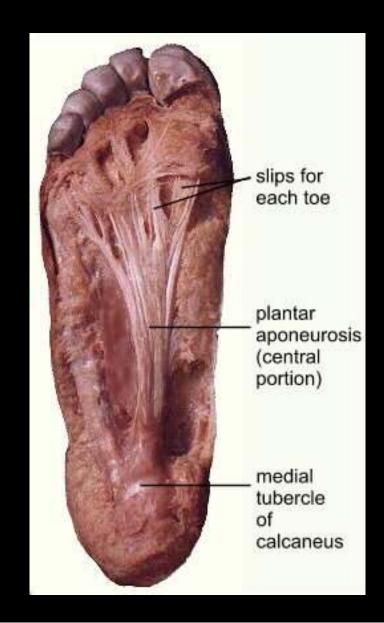
Or

Triple fusion

Triple fusion

Conclusions

- Complex problem
- Management guided by Stage and patient factors
- Individualised treatment plan
- Good results with conservative management
- Reconstruction before fusion, especially in young patients


"Following the operation on my foot in January, I would like to thank Mr Gower and his team for the immense improvement to the quality of my life brought about by the operation.

I have always been a very keen walker, but the problem with my tibial posterior tendon gradually reduced my mobility such that by the start of 2006 I could hardly walk at all and was in constant pain. I also had great difficulty cooking, showering, shopping and anything else that requires standing. Now, just a few months after the operation, I can walk several miles without pain and my ability continues to improve."

Plantar fascia

- Static and Dynamic functions
- Dependent on:
 - Flexibility of MTP joints
 - Length of skeleton of the foot
- Hicks
 - Tie-bar

