





#### **Drew Rowan**

**Professor of Molecular Rheumatology** 

Musculoskeletal Research Group Institute of Cellular Medicine Newcastle University

# Today's talk

# Cartilage

- What it is and what it does
- What goes wrong in disease (RA and OA)
- Treatment options
- -What we know about the process(es)
- What research offers

### What is extracellular matrix (ECM)?



Complex network of proteins and carbohydrates surrounding cells

### What do ECMs do?

Support and protection

- Musculoskeletal strength
- Skin



Transport of nutrients and waste products



• Pharmaceuticals

Cell migration, polarity and shape

• Wound repair



- Embryo development
- Tumour development

#### Intercellular communication

- Hormones
- Growth factors
- Cytokines





## Collagen fibres

![](_page_5_Figure_1.jpeg)

#### **Collagen fibres provide resistance to stretching forces**

![](_page_6_Picture_1.jpeg)

## Loss of collagen integrity leads to loss of strength of the cartilage matrix

![](_page_6_Picture_3.jpeg)

#### Diseases caused by mutations in collagen genes or collagen processing enzymes

| COL Gene                     | Disease                                                          |  |  |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| A1;COL1A2                    | OI, EDS types I, II, VIIA and VIIB, osteoporosis                 |  |  |  |  |  |  |  |  |
| 2A1                          | Several chondrodysplasias                                        |  |  |  |  |  |  |  |  |
| 3A1                          | EDS type IV, arterial aneurysms                                  |  |  |  |  |  |  |  |  |
| 4A3; 4A4; 4A5                | Alport syndrome                                                  |  |  |  |  |  |  |  |  |
| 4A5; 4A6                     | Alport syndrome with diffuse oesophageal leiomyomatosis          |  |  |  |  |  |  |  |  |
| 5A1;5A2                      | Ehlers Danlos Syndrome (EDS) types I and II                      |  |  |  |  |  |  |  |  |
| 6A1;6A2;6A3                  | Bethlem myopathy                                                 |  |  |  |  |  |  |  |  |
| 7A1                          | EB, dystrophic forms                                             |  |  |  |  |  |  |  |  |
| 8A2                          | Some forms of corneal endothelial dystrophy                      |  |  |  |  |  |  |  |  |
| 9A1;9A2;9A3                  | Multiple epiphyseal dysplasia, intervertebral disc disease, OA   |  |  |  |  |  |  |  |  |
| 10A1                         | Schmid metaphyseal dysplasia                                     |  |  |  |  |  |  |  |  |
| 11A1;11A2                    | Several mild chondrodysplasias §, non-syndromic hearing loss, OA |  |  |  |  |  |  |  |  |
| 17A1                         | Generalized atrophic benign EB                                   |  |  |  |  |  |  |  |  |
| 18A1                         | Knobloch syndrome                                                |  |  |  |  |  |  |  |  |
| Lysyl hydroxylase 1          | EDS type VI                                                      |  |  |  |  |  |  |  |  |
| Procollagen N-<br>proteinase | EDS type VIIC                                                    |  |  |  |  |  |  |  |  |

# Proteoglycans

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

- Proteoglycans attract water, forming an hydrated gel
- results in a swelling pressure (turgor)

resistance to compression

strength and support

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

#### How is a healthy ECM maintained?

- Cells within matrix (or in contact with matrix) secrete the ECM molecules
- The same cells also secrete enzymes which are able to digest the matrix

![](_page_10_Figure_3.jpeg)

#### Imbalance in proteolytic threshold leads to ECM destruction

![](_page_11_Figure_1.jpeg)

## Proteolysis

![](_page_12_Figure_1.jpeg)

# Metalloproteinases family

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

# Control of metalloproteinase activity

![](_page_14_Figure_1.jpeg)

### Transcriptional control of MPs and TIMPs

- cytokines/growth factors
- cell-matrix interaction

### The first collagenase was discovered in 1962

![](_page_15_Picture_1.jpeg)

### Collagenases cleave collagen at a single and unique site

![](_page_16_Figure_1.jpeg)

### Aggrecan cleavage

![](_page_17_Figure_1.jpeg)

### MMP expression changes

![](_page_18_Figure_1.jpeg)

# RA and OA are <u>both</u> characterized by proteolytic degradation of <u>cartilage collagen</u>

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

"The preservation of the collagen network is crucial for the survival of cartilage; there is evidence from organ culture experiments that when the collagen is lost, matrix is not regenerated whereas if the proteoglycan alone is removed, it is rapidly replaced."

**Collagen loss is a key therapeutic target** 

### **Biologics as therapeutics (in RA)**

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

Anakinra = Anti-IL-1

Atlizumab = Anti-IL-6

Etanercept = Anti-TNF

Infliximab = Anti-TNF

Retuximab = anti-CD20

![](_page_20_Figure_8.jpeg)

![](_page_20_Picture_9.jpeg)

### **OA therapeutics**

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_21_Picture_8.jpeg)

![](_page_22_Figure_0.jpeg)

# **RA** Progression

# **OA** Progression

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

#### Often a rapid process

#### Typically a slow process

### Disease mechanisms

- RA
  - autoimmune; genetic; inflammatory; synovium-driven
- OA

- mechanical or trauma; non-inflammatory; cartilage-driven

• Treatments

- most modulate pain and inflammation, NOT destruction

Current anti-inflammatory treatments (eg. NSAIDs) effectively reduce synovial inflammation, but do not prevent joint destruction

In RA, cartilage destruction clearly involves more than just the synovium

![](_page_25_Picture_2.jpeg)

Example of a very 'florid' RA synovial sample typically obtained at time of synovectomy in the 1980s

## Phenotypic changes in cartilage

![](_page_26_Picture_1.jpeg)

### Age-related changes to aggrecan

![](_page_27_Figure_1.jpeg)

# Collagen – Advanced glycation endproducts

- Sugar molecules bond to proteins & DNA which overtime are modified into AGEs
- Some AGEs form covalent cross-links stiffening tissues
- The <sup>1</sup>/<sub>2</sub> life of cartilage collagen >100yrs
- AGE levels in cartilage collagen increase
  >50-fold

# AGE consequences for cartilage

- AGE increases in cartilage cause
  - > tissue stiffness
  - > brittleness (mechanical damage)
  - < cellular adhesion to ECM</p>
  - < proliferation</pre>
  - Altered gene expression
  - < MMP-mediated collagen cleavage</p>
- >AGE levels in cartilage result in more severe OA in an animal model (DeGroot et al A&R, 2004, 50, 1207-1215)

### Age-related cartilage changes

Glycation endproducts Senescence Oxidative stress Apoptosis Protein mis-folding Epigenetics

### **???** A little of everything **???**

What do we know about the factors that promote cartilage destruction?

#### Inflammation in arthritis is perpetuated by cytokines

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

© www.rheumtext.com - Hochberg et al (eds)

#### Oncostatin M (OSM) in arthritis

- interleukin-6-type cytokine
- family share common surface receptor (gp130)
- produced by T-cells and monocytic cells
- increases acute-phase response in the liver
- induces TIMP-1 production in chondrocytes
- was thought to be anti-inflammatory

#### normal

![](_page_32_Picture_12.jpeg)

#### rheumatoid

![](_page_32_Picture_14.jpeg)

#### IL-1+OSM-induced cartilage collagenolysis

![](_page_33_Figure_1.jpeg)

### Hierarchy

eg. TNF $\alpha$ 

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

### **Co-operation**

eg. IL-1

![](_page_34_Figure_6.jpeg)

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

#### **CYTOKINE SYNERGY** – a little can have a big impact!

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

# Cytokine combinations that work and are present in inflammatory arthritis

- IL-1 (Cawston et al., 1995, 1998)
- IL-17 (Koshy et al., 2002a)
- TNFa (Hui *et al.*, 2003a,b)
- IL-6 (+sIL-6R) also identified (Rowan et al., 2001)

We now use IL-1+OSM as a potent, model stimulus of cartilage breakdown and MMP expression within the context of inflammatory arthritis

![](_page_36_Picture_6.jpeg)

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

#### **MMP** expression profiling in resorbing cartilage

![](_page_37_Figure_1.jpeg)

#### Adenoviral delivery of IL-1+OSM in murine joints

![](_page_38_Picture_1.jpeg)

IL-1

#### Adenoviral delivery of IL-1+OSM in murine joints

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

#### **Gene profiling – "transcriptomics"**

| 20                                                       | Signal  |       |       |              | Signal log ratio vs. control |      |              | Fold change vs. control |      |              |  |  |
|----------------------------------------------------------|---------|-------|-------|--------------|------------------------------|------|--------------|-------------------------|------|--------------|--|--|
| Gene                                                     | Control | IL-1  | OSM   | IL-1+<br>OSM | IL-1                         | OSM  | IL-1+<br>OSM | IL-1                    | OSM  | IL-1+<br>OSM |  |  |
| Proteases and inhibitors                                 |         |       |       |              |                              |      |              |                         |      |              |  |  |
| MMP-1                                                    | 22A     | 1875P | 28P   | 4217P        | 6.1                          | 0.3  | 7.3          | 67.6                    | 1.3  | 157.6*       |  |  |
| MMP-3                                                    | 376P    | 5862P | 318P  | 8910P        | 3.4                          | 0.2  | 4.4          | 10.2                    | 1.1  | 21.1*        |  |  |
| MMP-10                                                   | 30A     | 99P   | 14A   | 177A         | 1.2                          | -0.6 | 2.3          | 2.3                     | -0.7 | 4.8*         |  |  |
| MMP-12                                                   | 57A     | 1015P | 37A   | 2447P        | 3.6                          | -0.3 | 4.9          | 12.5                    | -0.8 | 30.7*        |  |  |
| MMP-13                                                   | ЗA      | 280P  | 18P   | 1548P        | 5.9                          | 2.0  | 8.4          | 58.9                    | 4.1  | 342.5*       |  |  |
| MMP-14                                                   | 22A     | 28A   | 97A   | 248P         | 0.0                          | 1.8  | 3.2          | 1.0                     | 3.5  | 8.9          |  |  |
| Antileukopeptidase                                       | 112P    | 175P  | 68A   | 400P         | 0.4                          | -0.7 | 2.4          | 1.1                     | -0.6 | 6.9          |  |  |
| SCCA 2                                                   | 4A      | 20A   | 525P  | 1125P        | 2.2                          | 5.8  | 7.2          | 4.4                     | 55.7 | 147.0        |  |  |
| Clr                                                      | 274P    | 1217P | 509P  | 1912P        | 2.2                          | 1.2  | 2.9          | 4.6                     | 2.3  | 7.5          |  |  |
| Chemokines, cytokines, receptors and signal transduction |         |       |       |              |                              |      |              |                         |      |              |  |  |
| IL-8                                                     | 2A      | 896P  | 2A    | 1972P        | 7.7                          | -0.2 | 9.0          | 207.9                   | -0.9 | 512.0*       |  |  |
| IL-1β                                                    | 24A     | 150A  | 48A   | 560P         | 2.9                          | 0.8  | 4.2          | 7.2                     | 1.7  | 18.4         |  |  |
| MCP-1                                                    | ЗA      | 175P  | 43A   | 285P         | 5.0                          | 3.9  | 6.3          | 32.0                    | 14.4 | 78.8*        |  |  |
| MCP-3                                                    | 43A     | 369P  | 89P   | 734P         | 3.8                          | 1.6  | 7.3          | 13.9                    | 3.0  | 28.8*        |  |  |
| IL-6                                                     | 53A     | 251P  | 43A   | 1486P        | 1.7                          | -0.1 | 4.3          | 3.3                     | -0.9 | 20.4*        |  |  |
| LIF                                                      | 12A     | 125M  | 9A    | 226P         | 3.1                          | -0.1 | 4.0          | 4.3                     | -0.9 | 10.2*        |  |  |
| OSMβR                                                    | 25P     | 71P   | 155P  | 253P         | 1.2                          | 2.7  | 3.3          | 2.4                     | 6.5  | 9.2          |  |  |
| ENA-78                                                   | 9A      | 10A   | 6A    | 217P         | 0.6                          | -0.2 | 4.4          | 1.5                     | -0.3 | 20.4*        |  |  |
| PBEF                                                     | 305P    | 928P  | 604P  | 2303P        | 1.6                          | 1.0  | 3.0          | 3.0                     | 2.0  | 8.1*         |  |  |
| Activin A                                                | 58A     | 90P   | 17A   | 125A         | 0.7                          | -2.3 | 1.5          | 1.8                     | -0.7 | 2.3*         |  |  |
| Jak 2 kinase                                             | 28A     | 88P   | 98P   | 371P         | 1.4                          | 1.5  | 3.2          | 2.7                     | 2.8  | 9.1          |  |  |
| Extracellular proteins                                   |         |       |       |              |                              |      |              |                         |      |              |  |  |
| Decorin variant A                                        | 14P     | 64P   | 23P   | 126P         | 1.8                          | 0.1  | 3.3          | 2.3                     | 1.2  | 18.4*        |  |  |
| Decorin variant C                                        | 98P     | 255P  | 99P   | 826P         | 1.7                          | 0.0  | 3.5          | 3.3                     | 1.0  | 11.3         |  |  |
| Fibronectin                                              | 130P    | 140P  | 397P  | 709P         | 0.11                         | 1.6  | 2.7          | 1.0                     | 2.9  | 6.3          |  |  |
| Serum amyloid A2                                         | 5A      | 289P  | 9A    | 2288P        | 5.15                         | 0.9  | 8.9          | 85.0                    | 1.1  | 362.0        |  |  |
| Calcium binding                                          | 7A      | 45A   | 18A   | 339P         | 1.51                         | 1.4  | 338.9        | 2.8                     | 2.6  | 45.3         |  |  |
| protein A9                                               |         |       |       |              |                              |      |              |                         |      |              |  |  |
| Calcium binding                                          | 33A     | 63A   | 19A   | 604P         | 0.91                         | -0.2 | 4.0          | 1.9                     | 1.7  | 16.0         |  |  |
| protein A8                                               |         |       |       |              |                              |      |              |                         |      |              |  |  |
| PTX 3                                                    | 18A     | 123P  | 24P   | 407P         | 2.59                         | 0.7  | 5.1          | 6.0                     | 1.6  | 33.6*        |  |  |
| Chitinase-3-like-2                                       | 79A     | 215P  | 71A   | 1750P        | 1.56                         | -0.3 | 3.9          | 2.9                     | 1.0  | 14.9         |  |  |
| Chitinase-3-1ike-1                                       | 243P    | 579P  | 1666P | 2320P        | 1.21                         | 2.7  | 3.2          | 2.4                     | 6.4  | 9.2          |  |  |
| SOD 3                                                    | 24P     | 232P  | 25A   | 404P         | 3.45                         | -0.2 | 5.7          | 24.8                    | 1.5  | 41.6         |  |  |

When studying OA, what is an appropriate control tissue????

Cartilage obtained from OA patients undergoing joint replacement is END-STAGE disease

### Animal model of OA

Surgical destabilisation of the medial meniscus (DMM)

![](_page_44_Picture_2.jpeg)

![](_page_44_Figure_3.jpeg)

Fig. 1. Diagram of the right knee joint of the mouse. F = femur; T = tibia; MM = medial meniscus; ACL = anterior (cranial) cruciate ligament; MMTL = medial meniscotibial ligament; LMTL = lateral meniscotibial ligament. The MMTL is transected to generate destabilization of the medial meniscus (DMM). The ACL is transected in the ACLT model.

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

PAR-2

1

![](_page_47_Figure_1.jpeg)

#### A model for cartilage destruction in OA in the absence of inflammation

![](_page_48_Figure_1.jpeg)

### Summary

Cartilage is a complex ECM

Chondrocytes do have a limited "repair response"

OA and RA are characterised by cartilage destruction

Current treatments are not universally effective

Metalloproteinases (MMPs) primarily mediate this destruction

Pro-inflammatory cytokines drive MMP expression

Inflammatory intracellular signaling is complex

Mechanisms that do not involve inflammation per se mediate destruction too

Need to identify the molecular mechanisms that drive cartilage destruction in order to develop therapeutics

### **The Key Questions**

Can we cure arthritis?

**Probably not!** 

Can we negate the need for joint replacements?

**Probably not!** 

Can we manage arthritis better?

**Most definitely!** 

# **Any Questions??**