Musculoskeletal Ultrasound (MSUS)

Joanna Cunnington SpR Rheumatology

- Why MSUS is of interest to us?
- MSUS basics
- Normal MSUS
- Pathology
- Intervention

- High resolution anatomical images
- Instant
- Dynamic
- No radiation
- Low cost
- Patient acceptable
- Change management instantly
- Laptop size / portable
- Multiple joints at one sitting

- More sensitive than clinical examination detecting synovitis
- More sensitive than x-ray detection erosion and progression of destruction over time
- MSUS correlates with inflammation visualised at arthroscopy and MRI in RA and PsA
- Better than clinical examination for enthesitis
- Fiocco, U., L. Cozzi, et al. (1996). "Long-term sonographic follow-up of rheumatoid and psoriatic proliferative knee joint synovitis." <u>Br J Rheumatol</u> 35(2): 155-63.
- 2. Kane, D., P. V. Balint, et al. (2003). "Ultrasonography is superior to clinical examination in the detection and localization of knee joint effusion in rheumatoid arthritis." J Rheumatol **30**(5): 966-71.
- 3. Ostergaard, M., M. Court-Payen, et al. (1995). "Ultrasonography in arthritis of the knee. A comparison with MR imaging." <u>Acta Radiol</u> **36**(1): 19-26.
- 4. Scheel, A. K., K. G. Hermann, et al. (2006). "Prospective 7 year follow up imaging study comparing radiography, ultrasonography, and magnetic resonance imaging in rheumatoid arthritis finger joints." <u>Ann Rheum Dis.</u> **65**(5): 595-600. Epub 2005 Sep 28.
- 5. Szkudlarek, M., M. Court-Payen, et al. (2001). "Power Doppler ultrasonography for assessment of synovitis in the metacarpophalangeal joints of patients with rheumatoid arthritis: a comparison with dynamic magnetic resonance imaging." <u>Arthritis Rheum</u> 44(9): 2018-23.

Tissue	Proven indication	Potential indication
Effusion	Diagnosis /aspiration /differentiation	US microscope
Synovium	Diagnosis	Research / outcome / classify extent
Bursa	Diagnosis /aspiration / injection	Actual pathology
Bone	Erosion (active or in active)	Bone tumours / fractures
Tendon / ligament	Damage / rupture / tendonitis / tenosynovitis / enthesitis / injection	Response to treatment
Skin	Thickness / sub cutaneous oedema	Atrophy / abscess / calcification
Cartilage	Defects / calification	Osteoarthritis
Muscle	Trauma / tumour/ abscess / calcification	Diagnosis / monitoring muscle inflammation
Vasculature	Inflammation / morphology vasculature	Diagnosis vasculitis / raynauds
Nerve	Entrapment / guided blocks	Diagnose axonal loss / demyelination

Training

- No consensus or formal pathway
- Suggested guidelines and curriculum have been published
- Individualised /targeted trade off between added clinical value and time to achieve competence
- Courses beginners / advanced
- Mentors
- Practice
- Websites and textbooks

SOUND-WAVE PORTRAIT IN THE FLESH

Asonatlike device produces pictures of the human body's solt bissues which are invisible to X-rays

The original Somascope from Howry, Bliss, Posakony and Cushman as it appeared in the Medicine section of the Life Magazine[®] in 1954. Sonosite Titan system (Sonosite Limited, Bothwell, USA) with a 5-10 MHz transducer.

TITAN.

SonoSite.

Technology

- Image resolution greater with higher frequency probes
- Penetration greater with lower frequency probes
- Our probes 5 -20 hz
- Power Doppler
- Tissue harmonics and cross beam technology
- 3D
- Contrast agents

Clinical utility

- OMERACT definitions of pathology ¹
- Reproducibility ²
- Impact on clinical practice ³

- 1. Wakefield, R. J., P. V. Balint, et al. (2005). "Musculoskeletal ultrasound including definitions for ultrasonographic pathology." <u>J Rheumatol.</u> **32**(12): 2485-7.
- 2. Szkudlarek, M., M. Court-Payen, et al. (2003). "Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis." <u>Arthritis Rheum</u> **48**(4): 955-62.
- 3. Karim, Z., R. J. Wakefield, et al. (2001). "The impact of ultrasonography on diagnosis and management of patients with musculoskeletal conditions." <u>Arthritis Rheum</u> 44(12): 2932-3.

OMERACT Definitions				
RA bone erosion	An IA discontinuity of the bone surface that is visible in 2 perpendicular planes.			
Synovial fluid	Abnormal hypoechoic or anechoic (relative to subdermal fat, but sometimes may be isoechoic or hyperechoic) IA material that is displaceable and compressible and which may exhibit Doppler signal.			
Synovial hypertrophy	Abnormal hypoechoic (relative to subdermal fat, but sometimes may be isoechoic or hyperechoic) IA tissue that is nondisplaceable and poorly compressible and which may exhibit Doppler signal.			
Tenosynovitis	Hypoechoic or anechoic thickened tissue with or without fluid within the tendon sheath, which is seen in 2 perpendicular planes and which may exhibit Doppler signal.			
Enthesopathy	Abnormally hypoechoic (loss of normal fibrillar architecture) and/or thickened tendon or ligament at its bony attachment (may occasionally contain hyperechoic foci consistent with calcification), seen in 2 perpendicular planes that may exhibit Doppler signal and/or bony changes including enthesophytes, erosions, or irregularity.			

Hands – normal and pathology

MCP head Phalangeal head Cartilage Extensor tendon

MCP – dorsal longitudinal

MCP – transverse

Metacarpal

Extensor tendon

MCP – palmar longitudinal and transverse

MC Head Proximal Phalanx Flexor tendon

Flexor pollicis

Thenar muscles

Thenar - longitudinal

Synovitis of MCPJ with CPD signal

Shoulder – normal and pathology

Humerus Bicipital groove Biceps tendon Subscapularis Deltoid Shoulder – Anterior Transverse Neutral Position

Anisotrope

Biceps tendon effusion

Shoulder – Anterior

Transverse Maximal Internal Rotation

Humerus

Supraspinatus Subdeltoid bursa

Deltoid

Shoulder – Anterior

Transverse Maximal Internal Rotation

Head of Humerus Supraspinatus Sub-deltoid bursa Deltoid Shoulder – Anterior Longitudinal Maximal Internal Rotation

Impingement test

Subscapularis

Shoulder effusion

Calcific tendonitis

Achilles and patella tendons

Achilles tendon – longitudinal view

Patella tendon trauma

Patella tendon insertion

Why?

Clinically guided injections are inaccurate (25% - 60%)^{1,2}

- Diagnosis accurate aspiration of fluid
 - Culture
 - Microscopy
- Intervention accurate delivery of therapeutic agent
 - Corticosteroid
 - Hyalgan
 - ?anti-TNF
- Eustace, J. A., D. P. Brophy, et al. (1997). "Comparison of the accuracy of steroid placement with clinical outcome in patients with shoulder symptoms." <u>Ann Rheum Dis.</u> **56**: 59-63.
- 2. Jones, A., M. Regan, et al. (1993). "Importance of placement of intra-articular steroid injections." BMJ 307(6915): 1329-30.

Accuracy with US guidance versus clinical guidance

Joint injected	Accurate by MSUS	Accurate by clinical guided	P value
All Joints	76/92 (83%)	61/92 (66%)	0.010
Shoulder	12/19 (63%)	8/20 (40%)	0.137
Elbow	10/11 (91%)	7/11 (64%)	0.100
Wrist	11/14 (79%)	12/16 (75%)	0.817
Knee	32/35 (91%)	27/33 (82%)	0.242
Ankle	11/13 (85%)	7/12 (58%)	0.131

Cunnington J, Marshall N et al (2010). "A randomized, double-blind, controlled study of ultrasound-guided corticosteroid injection into the joint of patients with inflammatory arthritis." <u>Arthritis Rheum</u>. 62(7):1862-9

Methods of guidance

- Direct method elbow
 - US to locate area to be injected
 - Skin is marked and depth of field measured

Injection is done using direct visualisation in real time to ensure accurate placement

N = needle with tip in joint space, Tri = triceps muscle insertion, FP = olecranon fossa fat pad, T = trochlear, O = olecranon, Sy = synovitis

Elbow injection

TOSHIBA	INJECT VANKLE ELBOW: O RHEUMATOLOGY FRH - OPE - GEN MSK	16/11/2006 11:14:11 AM
	0 • T + •	 MI:0.6
141.97	2.	200 84 DR 55
14.0 16 fps	· · ·	
	HDD:91% Free	

Methods of guidance

Indirect method - ankle

- US to locate area to be injected
- Skin is marked and depth of field measured

Injection is the done using the markings for guidance (no direct visualisation)

S = skin and subcutaneous fat, JC = thickened joint capsule, Sy = synovitis and effusion, I = injectate seen, Ti = tibia, Ta = talar, N = needle approach.

Tibiotalar injection

- Both of these methods have been shown to be feasible and safe for all joint and soft tissue injections
 - Indirect ankle, hip, small joints
 - Direct all others depending on size of probe and area
- Inject air or an air/steroid/saline mix into the joint capsule - clearly visualised by US
 - Particularly useful for hip (Qvistgaard, Kristoffersen et al. 2001; Koski, Hermunen et al. 2006).

MCP joint injection

MCPj injection

Subacromial space injection

SAB injection

Pre patella bursa

Pre patella bursal injection

Tendon sheath injection

Acknowledgements

- Dr Phil Platt
- Dr David Kane