

INTRAMEDULLARY NAILING AND THE FEMUR

Mr. Amresh Singh ST3 Sunderland

Objectives

- Femoral Anatomy
- Subtrochanteric
 Fractures
- Distal Femoral Fractures
- History of Nailing
- Antegrade Nailing
- Retrograde Nailing

Femoral Anatomy

Head

Neck

- Intertrochanteric
- Subtrochanteric (extending 5 cm below lesser trochanter)

Shaft

 Supracondylar and condylar regions

Vascular Supply - Head

Ascending cervical branches of the arterial ring

Arterial ring of the femoral neck

Medial femoral circumflex artery

Posterior

First perforator artery

Profunda femoris artery

2

 Mainly cortical bone therefore decreased vascularity / healing

Classification - OTA

- A1.1 A2.1 A3.1 B1.1 B3.1 B2.1 C1.1 C3.2 C2.1
- Femur, diaphyseal (32) <u>Type A</u>: two part A1: spiral A2: oblique A3: transverse
- <u>Type B</u>: butterfly fragment
 B1: spiral wedge
 B2: bending wedge
 B3: comminuted wedge
- <u>Type C</u>: complex/comminuted C1: spiral C2: segmental
 - C3: irregular

Classification - Seinsheimer's

- Type 1
 - Undisplaced <2mm
- Type 2
 - Two part / lesser troc
- Type 3
 - Three part / lesser troc
- Type 4
 - Comminuted
- Type 5
 - Comminuted / Greater troc

Seinsheimer F III. Subtrochanteric fractures of the femur. J Bone Joint Surg 1978;60A:300–306.

Classification – Russel Taylor

Russell-Taylor classification of subtrochanteric fractures. Skeletal Trauma 1998;2:1891–1897.

- Type 1 (intact piriform fossa)
 - ◆ 1A fx below lesser troc
 - ◆ 1B involves lesser troc
- Type 2 (piriform fossa involved)
 - 2A stable medial buttress
 - ◆ 2B medial buttress lost

Fracture Reduction

- Reduction levers
- Posterior "sink"
 - Obese patients
 - Bar / Crutch
- Percutaneous half pins
- Open Reduction
- Reduction Rod / nail in proximal segment

Distal Femoral Fracture

Distal 15cm

- 7 % of all femoral fractures (31% if exclude NOFs)
- Bimodal distribution
 - High / low energy
- Axial loading with rotation / valgus/ varus force

AO classification

- A: Extra-articular (Transverse)
 - Retrograde nail / MIPPO
- B: Unicondylar fracture
 - deforming forces: gastrocnemius
 - B III (Coronal or Hoffa fracture), only soft tissue attachment is posterior capsule, behaves like a large loose fragment.
 - Closed reduction / percutaneous screws
 - C: Bicondylar Fracture
 - Unrestricted pull of the quadriceps and gastrocnemius
 - MIPO

Deforming Forces

- Depends on configuration
- Gastrocnemius
 - Posterior angulation and rotation
- Quadriceps / Hamstrings
 - Shortening and anterior displacement shaft

Reduction

Closed

- Percutaneous 2 x 6.5mm cancellous screws
- Towels under distal femur knee flexion & relax gastrocnemius
- External fixator / distractor restore alignment / length
- Schanz screws joysticks
- Valgulisation eases ilio tib tract
- Percutaneous Clamp
- Open

Ipsilateral Neck and Shaft Fractures

 1-6 % shaft fracture have assoc neck fracture (Whittle, Russell, Taylor)

- Iatrogeninc (Yang JBJS 80B 1998)
 - ◆ 152 nails 8 NOFs 2 iatrogenic
- Other assoc injuries
 - Patella fracture
 - Acetabular fracture
 - Pelvic fracture

History of IM Nailing 16th Century – Wooden sticks ◆ 19th Century – Ivory nail 1890 – Locking Ivory nails ◆ 1917 – Autogenous bone Span of Cortex passed down canal ◆ WW1 – Hey Groves, Metallic Rods ◆ 1931 – Smith Peterson, steel rods ◆ 1940 – Gerhard Küntscher V- shaped stainless steel nail

Generations of Nails

First generation

- Piriform fossa entry
- Proximal and distal locking screws
- Span femur
- Second generation
 - Fixation into the femoral head
 - Entry site at or just anterior to piriform fossa
 - Distal locking screws
 - Span femur

Generations of Nail

- Third generation
 - Greater trochanter entry
 - Fixation into the femoral head
 - Distal locking screws
 - Span femur
- Latest Development -Lateral entry

Biomechanics

- Nail features
 - Wall thickness increases torsional stiffness
 - Open slot decreases rigidity
 - Nail diameter bending stiffness
 - Material titanium 1.6x stronger than steel
 - Cross sectional shape
 - Use of interlocking screws resists axial loading
 - Radius of curvature of nail (120cm vs 150-300cm)

Antegrade Nailing

Indications

Antegrade nailing

Contraindications

- Isolated femoral neck fracture
- Periprosthetic fractures
- Occluded intramedullary canal
- Polytrauma patients in unstable condition
 - Ex Fix
 - Convert to nail <2 weeks

Piriform Entry

In line with intramedullary canalEntry point cruical

 Anterior – deformation of nail and proximal fragment comminution

Dora et al (J Ortho Tr 2001)

- ◆ Cadaveric study 16
- Branches of MFCA damaged in all cases

Trochanteric Entry

- Easy to identify starting point
 - Slightly medial to tip of greater troc as drift laterally when reaming
- Avoids damage to MCFA
- Use guidewire vs. awl to start
- Ricci et al (OTA 2004)
 - Piriformis vs. trochanter entry
 - Similar union / complications/ functional results
 - Operative time longer Piriformis

Lateral Entry

- Consider in children
- Benefits
 - Easy access
 - No splitting glut med
- Risks
 - Iatrogenic proximal femur fracture – stiff reamers / anterior starting point
 - Varus / Valgus deformity (5°)

To Ream or Not to Ream

Advantages

- Larger implant = more rigid
- Increased rate of union
- Increased periosteal blood flow
- Osteoconductive elements
- Decreased hardware failure

Disadvantages

- Elevated intramedullary pressure
- Elevated pulmonary artery pressure
- Fat embolism
- Disrupts Endosteal blood supply

• Non Union rate - Ream (1.7%)

- Unreamed (7.5%)

- Bhandari (J Orth Tr 2000)
 - Decreased rate of non union and implant failure with reaming

Retrograde Nail

- Küntscher (Proc R Soc Med 1970)
- Short supracondylar nails placed through intercondylar distal femoral starting portal-1991
- Use expanded to treat intercondylar fractures / periprosthetic fractures

Retrograde Nailing - Indications

- For use when surgical time and repositioning cannot be tolerated.
- Ease in identifying starting

- Morbid obesity
- Distal metaphyseal fractures
- Peri prosthetic
- Non / Mal Union
- Pathological fracture
- Ipsilateral femoral neck fracture
- Ipsilateral patella fracture
- Ipsilateral tibia fracture

AP – in line with shaft Lateral – apex of Blumensaat's line

Retrograde Nailing -Contraindications

- Subtrochanteric fracture
- Limited knee motion (if starting point inaccessible)
- Patellar baja
- Open fractures

- Techniques • Nail recessed beneath the cartilage surface distally • Above lesser troc proximally Morgan (J Ortho Tr 1999) 1mm prominence increases patellofemoral contact pressure ◆ Distal locking – jig Proximal locking – Ant to Post
 - locking
 - Safe zone level of lesser troc

Complications

- Proximal locking profunda femoris damage
- Heterotopic ossification in intraarticular and periarticular locations
- Synovial metallosis
- Decreased blood flow to the distal femur and the cruciate ligaments

Conclusion

- Choice of nail depends on fracture configuration and pt related factors
- Consider muscle forces to aid reduction
- Associated injuries
- AVN risk esp before physeal closure
- KNOW YOUR IMPLANT !