INTRAMEDULLARY NAILING AND THE FEMUR

Mr. Amresh Singh
ST3
Sunderland
Objectives

- Femoral Anatomy
- Subtrochanteric Fractures
- Distal Femoral Fractures
- History of Nailing
- Antegrade Nailing
- Retrograde Nailing
Femoral Anatomy

- Head
- Neck
- Intertrochanteric
- Subtrochanteric (extending 5 cm below lesser trochanter)
- Shaft
- Supracondylar and condylar regions
Subtrochanteric Fractures

- Between lesser troc and 5cm distal
- 10-30% of all hip fractures
- High (<25yr) or low energy (>65yr)
- Pathological (35%)
- High biomechanical stress
 - Medial – compressive
 - Lateral – tensile
- Mainly cortical bone therefore decreased vascularity / healing
Classification - OTA

- Femur, diaphyseal (32)
 - Type A: two part
 - A1: spiral
 - A2: oblique
 - A3: transverse
 - Type B: butterfly fragment
 - B1: spiral wedge
 - B2: bending wedge
 - B3: comminuted wedge
 - Type C: complex/comminuted
 - C1: spiral
 - C2: segmental
 - C3: irregular
Classification - Seinsheimer’s

- Type 1
 - Undisplaced <2mm
- Type 2
 - Two part / lesser troc
- Type 3
 - Three part / lesser troc
- Type 4
 - Comminuted
- Type 5
 - Comminuted / Greater troc

Deforming forces
Fracture Reduction

- Reduction levers
- Posterior “sink”
 - Obese patients
 - Bar / Crutch
- Percutaneous half pins
- Open Reduction
- Reduction Rod / nail in proximal segment
Distal Femoral Fracture

- Distal 15cm
- 7% of all femoral fractures (31% if exclude NOFs)
- Bimodal distribution
 - High / low energy
- Axial loading with rotation / valgus/ varus force
AO classification

- **A:** Extra-articular (Transverse)
 - Retrograde nail / MIPPO
- **B:** Unicondylar fracture
 - deforming forces: gastrocnemius
 - B III (Coronal or Hoffa fracture), only soft tissue attachment is posterior capsule, behaves like a large loose fragment.
 - Closed reduction / percutaneous screws
- **C:** Bicondylar Fracture
 - Unrestricted pull of the quadriceps and gastrocnemius
 - MIPO
Deforming Forces

- Depends on configuration
- Gastrocnemius
 - Posterior angulation and rotation
- Quadriceps / Hamstrings
 - Shortening and anterior displacement shaft
Reduction

- **Closed**
 - Percutaneous 2 x 6.5mm cancellous screws
 - Towels under distal femur - knee flexion & relax gastrocnemius
 - External fixator / distractor - restore alignment / length
 - Schanz screws – joysticks
 - Valgulisation – eases ilio tib tract
 - Percutaneous Clamp

- **Open**
Ipsilateral Neck and Shaft Fractures

- 1-6% shaft fracture have assoc neck fracture (Whittle, Russell, Taylor)
- Iatrogenic (Yang JBJS 80B 1998)
 - 152 nails – 8 NOFs – 2 iatrogenic
- Other assoc injuries
 - Patella fracture
 - Acetabular fracture
 - Pelvic fracture
History of IM Nailing

- 16th Century – Wooden sticks
- 19th Century – Ivory nail
- 1890 – Locking Ivory nails
- 1917 – Autogenous bone
 - Span of Cortex passed down canal
- WW1 – Hey Groves, Metallic Rods
- 1931 – Smith Peterson, steel rods
- 1940 – Gerhard Küntscher
 - V-shaped stainless steel nail
Generations of Nails

- First generation
 - Piriform fossa entry
 - Proximal and distal locking screws
 - Span femur

- Second generation
 - Fixation into the femoral head
 - Entry site at or just anterior to piriform fossa
 - Distal locking screws
 - Span femur
Generations of Nail

- Third generation
 - Greater trochanter entry
 - Fixation into the femoral head
 - Distal locking screws
 - Span femur

- Latest Development - Lateral entry
Biomechanics

- Nail features
 - Wall thickness increases torsional stiffness
 - Open slot decreases rigidity
 - Nail diameter – bending stiffness
 - Material – titanium 1.6x stronger than steel
- Cross sectional shape
- Use of interlocking screws resists axial loading
- Radius of curvature of nail (120cm vs 150-300cm)
Antegrade Nailing

- Indications
Antegrade nailing

- Contraindications
 - Isolated femoral neck fracture
 - Periprosthetic fractures
 - Occluded intramedullary canal
 - Polytrauma patients in unstable condition
 - Ex Fix
 - Convert to nail <2 weeks
Patient Set up

10–15°
Piriform Entry

- In line with intramedullary canal
- Entry point crucial
 - Anterior – deformation of nail and proximal fragment comminution
- Dora et al (J Ortho Tr 2001)
 - Cadaveric study – 16
 - Branches of MFCA damaged in all cases
Trochanteric Entry

- Easy to identify starting point
- Slightly medial to tip of greater troc as drift laterally when reaming
- Avoids damage to MCFA
- Use guidewire vs. awl to start
- Ricci et al (OTA 2004)
 - Piriformis vs. trochanter entry
 - Similar union / complications/ functional results
 - Operative time longer - Piriformis
Lateral Entry

- Consider in children
- Benefits
 - Easy access
 - No splitting glut med
- Risks
 - Iatrogenic proximal femur fracture – stiff reamers / anterior starting point
 - Varus / Valgus deformity (5°)
AVN following nailing

- >1 year after nailing
- Adolescents due to damage to MCFA
- 3-4% Incidence
- POSNA 2000
 - 1600 femurs nailed -> 0.8% AVN
- Keeler (J Paed Ortho 2009)
 - 80 femurs, adolescents, lateral entry
 - No incidence of AVN
To Ream or Not to Ream

Advantages
- Larger implant = more rigid
- Increased rate of union
- Increased periosteal blood flow
- Osteoconductive elements
- Decreased hardware failure

Disadvantages
- Elevated intramedullary pressure
- Elevated pulmonary artery pressure
- Fat embolism
- Disrupts Endosteal blood supply
- Giannoudis (Injury 1997)
 - Ream (20.5 wks) / Unream (26.9 wks)
- Tornetta & Tiburzi (J Orth Tr 2000)
 - Ream (80 days) / Unream (109 days)
- Canadian Study Group (JBJS Am 2003)
 - Non Union rate - Ream (1.7%)
 - Unreamed (7.5%)
- Bhandari (J Orth Tr 2000)
 - Decreased rate of non union and implant failure with reaming
Retrograde Nail

- Short supracondylar nails placed through intercondylar distal femoral starting portal-1991
- Use expanded to treat intercondylar fractures / periprosthetic fractures
Retrograde Nailing - Indications

- For use when surgical time and repositioning cannot be tolerated.
- Ease in identifying starting point

- Morbid obesity
- Distal metaphyseal fractures
- Peri prosthetic
- Non / Mal Union
- Pathological fracture
- Ipsilateral femoral neck fracture
- Ipsilateral patella fracture
- Ipsilateral tibia fracture
Entry Point

AP – in line with shaft
Lateral – apex of Blumensaat’s line
Retrograde Nailing - Contraindications

- Subtrochanteric fracture
- Limited knee motion (if starting point inaccessible)
- Patellar baja
- Open fractures
Patient Set up
Techniques

- Nail recessed beneath the cartilage surface distally
- Above lesser troc proximally
- Morgan (J Ortho Tr 1999)
 - 1mm prominence increases patello-femoral contact pressure
- Distal locking – jig
- Proximal locking – Ant to Post locking
 - Safe zone – level of lesser troc
Complications

- Proximal locking – profunda femoris damage
- Heterotopic ossification in intra-articular and periarticular locations
- Synovial metallosis
- Decreased blood flow to the distal femur and the cruciate ligaments
Conclusion

- Choice of nail depends on fracture configuration and pt related factors
- Consider muscle forces to aid reduction
- Associated injuries
- AVN risk – esp before physeal closure
- KNOW YOUR IMPLANT!